Smart “Predict, then Optimize”

计算机科学 数学优化 最优化问题 功能(生物学) 算法 数学 进化生物学 生物
作者
Adam N. Elmachtoub,Paul Grigas
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (1): 9-26 被引量:391
标识
DOI:10.1287/mnsc.2020.3922
摘要

Many real-world analytics problems involve two significant challenges: prediction and optimization. Because of the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages the optimization problem structure—that is, its objective and constraints—for designing better prediction models. A key component of our framework is the SPO loss function, which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and, thus, we derive, using duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest-path and portfolio-optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular, when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random-forest algorithms, even when the ground truth is highly nonlinear. This paper was accepted by Yinyu Ye, optimization. Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mnsc.2020.3922
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
香蕉觅云应助柚子采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
9秒前
CodeCraft应助ccc采纳,获得10
13秒前
今后应助llg采纳,获得10
14秒前
Neon完成签到,获得积分10
14秒前
漂亮萝莉发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
18秒前
房LY完成签到,获得积分10
20秒前
Alin发布了新的文献求助30
20秒前
22秒前
24秒前
识途发布了新的文献求助10
24秒前
迷路易形完成签到,获得积分10
24秒前
llg完成签到,获得积分10
25秒前
隐形曼青应助绿色心情采纳,获得10
25秒前
李健的粉丝团团长应助aefs采纳,获得10
26秒前
28秒前
科研通AI5应助niuniu采纳,获得10
28秒前
Jasper应助识途采纳,获得10
28秒前
ccc发布了新的文献求助10
29秒前
漂亮萝莉完成签到,获得积分10
30秒前
等待的小海豚完成签到,获得积分10
30秒前
Chouvikin完成签到,获得积分10
30秒前
31秒前
31秒前
小蘑菇应助fcgcgfcgf采纳,获得10
34秒前
34秒前
星河圈揽发布了新的文献求助10
36秒前
seven完成签到,获得积分10
37秒前
林克发布了新的文献求助10
38秒前
39秒前
完美世界应助ggg采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779930
求助须知:如何正确求助?哪些是违规求助? 3325323
关于积分的说明 10222572
捐赠科研通 3040476
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798850
科研通“疑难数据库(出版商)”最低求助积分说明 758612