生物传感器
电化学
纳米技术
电极
金属
金属有机骨架
材料科学
流离失所(心理学)
单排替反应
小RNA
组合化学
化学
无机化学
有机化学
冶金
基因
物理化学
吸附
生物化学
心理治疗师
心理学
作者
He Wang,Yannan Jian,Qingkun Kong,Haiyun Liu,Feifei Lan,Linlin Liang,Shenguang Ge,Jinghua Yu
标识
DOI:10.1016/j.snb.2017.10.188
摘要
A novel electrochemical biosensor based on hairpin assembly target recycling for signal amplification and Au nanoparticles (AuNPs) modified Cu-based metal-organic frameworks (Cu-MOFs) for catalysis was constructed for highly sensitive detection of microRNA (miRNA). It was worth noting that the recycling of target was finished only based on strand displacement reaction without nuclease. In addition, a novel catalytic material of Cu-MOFs was prepared, which could provide more large surface area for AuNPs enveloping and DNA strand 1 (S1) immobilization. In this sensing process, the released target was available for initiating many of cycles, and the prepared [email protected] was linked to the modified electrode by chain hybridization, which was promising for signal amplification. All electrical signal measurements and chain displacement reactions are carried out on a compatibly designed origami electrochemical device (OECD). In the presence of glucose, AuNPs and Cu-MOFs cooperatively catalyzed the oxidation of glucose, resulting in the wide linear detection range from 1.0 fM to 10 nM and the detection limit of 0.35 fM for miRNA-155 with extremely high sensitivity. As we expect, the newly designed biosensor was successfully applied to the detection of miRNA-155 in serum samples from healthy people to cancer patients. Therefore, this proposed method could provide a promising and safe pathway for sensitive detection of miRNAs in clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI