An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors

集合(抽象数据类型) 计算机科学 进化算法 数学优化 多目标优化 算法 单纯形 最优化问题 分解 数学 几何学 生态学 生物 程序设计语言
作者
Md Asafuddoula,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2321-2334 被引量:91
标识
DOI:10.1109/tcyb.2017.2737519
摘要

Multiobjective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems (MaOPs). Development of algorithms to solve MaOPs has garnered significant research attention in recent years. "Decomposition" is a commonly adopted approach toward this aim, wherein the problem is divided into a set of simpler subproblems guided by a set of reference vectors. The reference vectors are often predefined and distributed uniformly in the objective space. Use of such uniform distribution of reference vectors has shown commendable performance on problems with "regular" Pareto optimal front (POF), i.e., those that are nondegenerate, smooth, continuous, and easily mapped by a unit simplex of reference vectors. However, the performance deteriorates for problems with "irregular" POF (i.e., which deviate from above properties), since a number of reference vectors may not have a solution on the POF along them. While adaptive approaches have been suggested in the literature that attempt to delete/insert reference directions conforming to the geometry of the evolving front, their performance may in turn be compromised for problems with regular POFs. This paper presents a generalized version of previously proposed decomposition-based evolutionary algorithm with adaptive reference vectors, intended toward achieving competitive performance for both types of problems. The proposed approach starts off with a set of uniform reference vectors and collects information about feasibility and nondominance of solutions that associate with the reference vectors over a learning period. Subsequently, new reference directions are inserted/deleted, while the original directions may assume an active or inactive role during the course of evolution. Numerical experiments are conducted over a wide range of problems with regular and irregular POFs with up to 15 objectives to demonstrate the competence of the proposed approach with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二三四完成签到,获得积分10
2秒前
Passskd发布了新的文献求助10
2秒前
3秒前
陶醉龙猫发布了新的文献求助10
3秒前
紫电青霜完成签到,获得积分10
3秒前
CipherSage应助单薄的静丹采纳,获得10
3秒前
HH完成签到,获得积分10
5秒前
李健应助别翘二郎腿采纳,获得10
5秒前
7秒前
可爱的苗条关注了科研通微信公众号
7秒前
我是老大应助鱼鱼鱼采纳,获得10
8秒前
8秒前
9秒前
精明外套发布了新的文献求助10
10秒前
飞快的珩发布了新的文献求助10
11秒前
11秒前
搞科研的崔桑完成签到,获得积分10
13秒前
14秒前
14秒前
一一发布了新的文献求助10
15秒前
科研通AI5应助橘子味的风采纳,获得10
17秒前
啵啵洋发布了新的文献求助10
18秒前
18秒前
精明外套完成签到,获得积分10
19秒前
鱼鱼鱼发布了新的文献求助10
20秒前
21秒前
21秒前
亦舒发布了新的文献求助10
22秒前
Sunshine完成签到,获得积分10
22秒前
缥缈的丹翠关注了科研通微信公众号
23秒前
科研通AI5应助大恩区采纳,获得10
23秒前
24秒前
Owen应助WWW采纳,获得10
25秒前
大小宇完成签到,获得积分10
25秒前
25秒前
25秒前
25秒前
风起完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462