Novel optimized crow search algorithm for feature selection

可解释性 特征选择 特征(语言学) 计算机科学 公制(单位) 还原(数学) 算法 选择(遗传算法) 人工智能 搜索算法 模式识别(心理学) 数据挖掘 机器学习 数学 哲学 语言学 经济 运营管理 几何学
作者
Behrouz Samieiyan,Poorya MohammadiNasab,Mostafa Abbas Mollaei,Fahimeh Hajizadeh,Mohammad Reza Kangavari
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:204: 117486-117486 被引量:24
标识
DOI:10.1016/j.eswa.2022.117486
摘要

Feature selection techniques have been presented to allow us to choose a small subset of the original components' relevant features by removing irrelevant or redundant features. Feature selection is essential for many reasons such as simplification, performance, computational efficiency, and quality interpretability. Owing to the importance mentioned above, many researchers have proposed and developed many algorithms to solve the feature selection problem. Although these approaches produce useful results, they possess some shortcomings like inadequate feature reduction. In this paper, a novel feature selection algorithm based on the crow search algorithm is presented. The algorithm uses dynamic awareness probability to keep the balance between the local and global search processes. Moreover, a novel neighborhood assigning strategy has been introduced to optimize the local search. Considering the best-selected features in each iteration helps attain more benefits in global search. The main superiority of the proposed algorithm is the significant feature reduction along with retaining the accuracy. Compared to enhanced crow search algorithm, the proposed algorithm has improved the feature reduction metric and fitness metric by 27.12% and 5.16%, respectively, while losing the accuracy metric by only 0.53%. Several popular UCI datasets have been employed to evaluate the proposed feature selection algorithm. The experimental results show that the proposed algorithm outperformed other feature selection algorithms in state-of-the-art related works regarding feature reduction and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子芳香完成签到 ,获得积分10
2秒前
5秒前
Hollen完成签到 ,获得积分10
5秒前
闪闪的斑马完成签到,获得积分10
5秒前
vicar完成签到,获得积分10
6秒前
sangsang完成签到,获得积分20
8秒前
yhy完成签到,获得积分10
9秒前
虫子发布了新的文献求助10
9秒前
11秒前
夜曦完成签到 ,获得积分10
12秒前
傲娇的笑白完成签到 ,获得积分10
14秒前
Spring发布了新的文献求助10
14秒前
bsn完成签到 ,获得积分10
14秒前
暖暖发布了新的文献求助10
18秒前
牛奶煮萝莉完成签到 ,获得积分10
18秒前
guishouyu完成签到,获得积分10
18秒前
Mozart发布了新的文献求助10
18秒前
19秒前
SGLY完成签到,获得积分10
20秒前
两天浇一次水完成签到,获得积分10
20秒前
luoqin完成签到 ,获得积分10
23秒前
随机完成签到,获得积分10
24秒前
HF7发布了新的文献求助10
25秒前
SSDlk完成签到,获得积分10
30秒前
芳芳子呀完成签到,获得积分10
30秒前
毅然决然必然完成签到,获得积分10
31秒前
爱笑子默完成签到 ,获得积分10
32秒前
小权拳的权完成签到,获得积分10
33秒前
RadiantYT完成签到,获得积分10
34秒前
34秒前
mumufan完成签到,获得积分10
34秒前
35秒前
无奈的又晴完成签到,获得积分10
36秒前
王十二完成签到 ,获得积分10
38秒前
junjun发布了新的文献求助10
39秒前
oxear完成签到,获得积分10
39秒前
善学以致用应助朱灭龙采纳,获得10
39秒前
小单人发布了新的文献求助10
40秒前
谨慎的凝丝完成签到,获得积分10
40秒前
种子完成签到 ,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934646
求助须知:如何正确求助?哪些是违规求助? 3480069
关于积分的说明 11006407
捐赠科研通 3209892
什么是DOI,文献DOI怎么找? 1773966
邀请新用户注册赠送积分活动 860610
科研通“疑难数据库(出版商)”最低求助积分说明 797778