Exploring COVID-19–Related Stressors: Topic Modeling Study

压力源 心理健康 社会心理的 大流行 潜在Dirichlet分配 主题模型 心理学 社会化媒体 公共卫生 2019年冠状病毒病(COVID-19) 老年学 医学 精神科 计算机科学 人工智能 疾病 万维网 护理部 病理 传染病(医学专业)
作者
Yue Tong Leung,Farzad Khalvati
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:24 (7): e37142-e37142 被引量:25
标识
DOI:10.2196/37142
摘要

Background The COVID-19 pandemic has affected the lives of people globally for over 2 years. Changes in lifestyles due to the pandemic may cause psychosocial stressors for individuals and could lead to mental health problems. To provide high-quality mental health support, health care organizations need to identify COVID-19–specific stressors and monitor the trends in the prevalence of those stressors. Objective This study aims to apply natural language processing (NLP) techniques to social media data to identify the psychosocial stressors during the COVID-19 pandemic and to analyze the trend in the prevalence of these stressors at different stages of the pandemic. Methods We obtained a data set of 9266 Reddit posts from the subreddit \rCOVID19_support, from February 14, 2020, to July 19, 2021. We used the latent Dirichlet allocation (LDA) topic model to identify the topics that were mentioned on the subreddit and analyzed the trends in the prevalence of the topics. Lexicons were created for each of the topics and were used to identify the topics of each post. The prevalences of topics identified by the LDA and lexicon approaches were compared. Results The LDA model identified 6 topics from the data set: (1) “fear of coronavirus,” (2) “problems related to social relationships,” (3) “mental health symptoms,” (4) “family problems,” (5) “educational and occupational problems,” and (6) “uncertainty on the development of pandemic.” According to the results, there was a significant decline in the number of posts about the “fear of coronavirus” after vaccine distribution started. This suggests that the distribution of vaccines may have reduced the perceived risks of coronavirus. The prevalence of discussions on the uncertainty about the pandemic did not decline with the increase in the vaccinated population. In April 2021, when the Delta variant became prevalent in the United States, there was a significant increase in the number of posts about the uncertainty of pandemic development but no obvious effects on the topic of fear of the coronavirus. Conclusions We created a dashboard to visualize the trend in the prevalence of topics about COVID-19–related stressors being discussed on a social media platform (Reddit). Our results provide insights into the prevalence of pandemic-related stressors during different stages of the COVID-19 pandemic. The NLP techniques leveraged in this study could also be applied to analyze event-specific stressors in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jun_shen完成签到,获得积分10
刚刚
Gao完成签到 ,获得积分10
1秒前
2秒前
端庄的绿竹完成签到,获得积分10
3秒前
瘦瘦的艳发布了新的文献求助10
3秒前
丘比特应助飞翔的鸣采纳,获得10
4秒前
lyuyl发布了新的文献求助10
5秒前
Sunny完成签到,获得积分10
6秒前
大个应助QQ星采纳,获得10
6秒前
完美世界应助xixi采纳,获得10
7秒前
7秒前
啾啾咪咪完成签到,获得积分10
7秒前
8秒前
tent01发布了新的文献求助10
8秒前
李健应助wenxianxiazai123采纳,获得10
11秒前
科研通AI6应助科研小锄头采纳,获得10
11秒前
苹果音响应助WANDour采纳,获得10
11秒前
清爽山河完成签到 ,获得积分10
12秒前
努力学习发布了新的文献求助20
12秒前
Fairy发布了新的文献求助10
15秒前
15秒前
sober完成签到,获得积分10
17秒前
17秒前
yousheng完成签到,获得积分10
18秒前
不会写完成签到,获得积分10
19秒前
香蕉觅云应助19554133922采纳,获得10
19秒前
ssf发布了新的文献求助30
19秒前
lyuyl完成签到,获得积分10
20秒前
like411发布了新的文献求助10
20秒前
21秒前
瑾瑜关注了科研通微信公众号
22秒前
SciGPT应助sober采纳,获得10
23秒前
xixi发布了新的文献求助10
23秒前
王一博完成签到,获得积分10
23秒前
24秒前
Eternity完成签到,获得积分10
24秒前
细腻怜翠关注了科研通微信公众号
24秒前
明天会更好完成签到,获得积分20
25秒前
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543