Machine Learning Prediction of Structure‐Performance Relationship in Organic Synthesis

化学 有机合成 启发式 人工智能 区域选择性 机器学习 反应性(心理学) 生化工程 计算机科学 催化作用 有机化学 医学 替代医学 病理 工程类 操作系统
作者
Li‐Cheng Yang,Lu‐Jing Zhu,Shuo‐Qing Zhang,Xin Hong
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:40 (17): 2106-2117 被引量:9
标识
DOI:10.1002/cjoc.202200039
摘要

Comprehensive Summary Data‐driven approach has emerged as a powerful strategy in the construction of structure‐performance relationships in organic synthesis. To close the gap between mechanistic understanding and synthetic prediction, we have made efforts to implement mechanistic knowledge in machine learning modelling of organic transformation, as a way to achieve accurate predictions of reactivity, regio‐ and stereoselectivity. We have constructed a comprehensive and balanced computational database for target radical transformations (arene C—H functionalization and HAT reaction), which laid the foundation for the reactivity and selectivity prediction. Furthermore, we found that the combination of computational statistics and physical organic descriptors offers a practical solution to build machine learning structure‐performance models for reactivity and regioselectivity. To allow machine learning modelling of stereoselectivity, a structured database of asymmetric hydrogenation of olefins was built, and we designed a chemical heuristics‐based hierarchical learning approach to effectively use the big data in the early stage of catalysis screening. Our studies reflect a tiny portion of the exciting developments of machine learning in organic chemistry. The synergy between mechanistic knowledge and machine learning will continue to generate a strong momentum to push the limit of reaction performance prediction in organic chemistry. How do you get into this specific field? Could you please share some experiences with our readers? Based on my study experience in Prof. Houk's lab and Prof. Nørskov's lab, my major idea since the beginning of my lab is to combine the key design principles of homogeneous catalysis (transition state model) and heterogeneous (scaling relationship) catalysis. This idea eventually evolved to our explorations of mechanism‐based machine learning in organic chemistry. How do you supervise your students? I try my best to give them enough space and freedom, so they can experience the joy in chemistry research. What are your hobbies? I enjoy science fiction movies and novels. What is the most important personality for scientific research? Chemistry has unlimited frontiers. Targeting a hardcore question, developing someone's own approach is the most important merit in fundamental scientific research. How do you keep balance between research and family? Work‐life balance is certainly one of the biggest challenges for junior faculty. I try to work in fragmented time, so I would be available for both my family and my students. Who influences you mostly in your life? My high‐school experience in Chemistry Olympiad has influenced me dramatically, which cultivated my independent learning ability to tackle new questions. This has helped me a lot throughout my career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
我是老大应助yi采纳,获得10
1秒前
2秒前
zmy发布了新的文献求助10
2秒前
甜美的芷发布了新的文献求助10
2秒前
peekaboo完成签到,获得积分10
2秒前
3秒前
皇帝的床帘完成签到,获得积分10
4秒前
4秒前
5秒前
段段砖发布了新的文献求助10
8秒前
汉堡包应助彳亍采纳,获得10
8秒前
8秒前
cn发布了新的文献求助10
8秒前
斯文败类应助小东采纳,获得10
9秒前
LLLK发布了新的文献求助10
9秒前
Ning发布了新的文献求助10
10秒前
10秒前
Terahertz完成签到 ,获得积分10
12秒前
笨笨摇伽完成签到,获得积分10
12秒前
佳佳应助MOON采纳,获得10
13秒前
13秒前
CindyLee发布了新的文献求助10
13秒前
田様应助朝闻道采纳,获得10
13秒前
平淡的初翠完成签到 ,获得积分10
15秒前
铲铲完成签到,获得积分10
17秒前
FOLY发布了新的文献求助10
17秒前
666发布了新的文献求助10
20秒前
LLLK完成签到,获得积分10
21秒前
小蘑菇应助FOLY采纳,获得10
22秒前
脑洞疼应助卡卡西西西采纳,获得10
23秒前
段段砖完成签到,获得积分10
25秒前
26秒前
wendinfgmei应助甜美的芷采纳,获得10
31秒前
31秒前
朝闻道发布了新的文献求助10
31秒前
乱七八糟发布了新的文献求助10
32秒前
Akim应助药叉采纳,获得20
33秒前
34秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Building Quantum Computers 458
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854772
求助须知:如何正确求助?哪些是违规求助? 3397520
关于积分的说明 10602192
捐赠科研通 3119243
什么是DOI,文献DOI怎么找? 1719166
邀请新用户注册赠送积分活动 828079
科研通“疑难数据库(出版商)”最低求助积分说明 777276