An Artificial Intelligence Multiprocessing Scheme for the Diagnosis of Osteosarcoma MRI Images

计算机科学 人工智能 分割 骨肉瘤 稳健性(进化) 医学影像学 图像分割 磁共振成像 模式识别(心理学) 计算机视觉 放射科 医学 病理 生物化学 化学 基因
作者
Jia Wu,Pei Xiao,Haojie Huang,Fangfang Gou,Zhixun Zhou,Zhehao Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (9): 4656-4667 被引量:47
标识
DOI:10.1109/jbhi.2022.3184930
摘要

Osteosarcoma is the most common malignant osteosarcoma, and most developing countries face great challenges in the diagnosis due to the lack of medical resources. Magnetic resonance imaging (MRI) has always been an important tool for the detection of osteosarcoma, but it is a time-consuming and labor-intensive task for doctors to manually identify MRI images. It is highly subjective and prone to misdiagnosis. Existing computer-aided diagnosis methods of osteosarcoma MRI images focus only on accuracy, ignoring the lack of computing resources in developing countries. In addition, the large amount of redundant and noisy data generated during imaging should also be considered. To alleviate the inefficiency of osteosarcoma diagnosis faced by developing countries, this paper proposed an artificial intelligence multiprocessing scheme for pre-screening, noise reduction, and segmentation of osteosarcoma MRI images. For pre-screening, we propose the Slide Block Filter to remove useless images. Next, we introduced a fast non-local means algorithm using integral images to denoise noisy images. We then segmented the filtered and denoised MRI images using a U-shaped network (ETUNet) embedded with a transformer layer, which enhances the functionality and robustness of the traditional U-shaped architecture. Finally, we further optimized the segmented tumor boundaries using conditional random fields. This paper conducted experiments on more than 70,000 MRI images of osteosarcoma from three hospitals in China. The experimental results show that our proposed methods have good results and better performance in pre-screening, noise reduction, and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Annie采纳,获得10
4秒前
珠珠完成签到,获得积分10
7秒前
易夜雨居发布了新的文献求助10
9秒前
豪士赋完成签到,获得积分10
11秒前
科研通AI2S应助风花采纳,获得10
14秒前
15秒前
15秒前
梁婷发布了新的文献求助10
20秒前
22秒前
chiyu完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
xu完成签到,获得积分10
26秒前
Taylor发布了新的文献求助10
26秒前
27秒前
MiriamYu完成签到,获得积分10
28秒前
俗丨完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
ZWK发布了新的文献求助10
30秒前
华仔应助梁婷采纳,获得10
31秒前
31秒前
31秒前
yznfly应助科研通管家采纳,获得150
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得30
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
33秒前
36秒前
暮寻屿苗完成签到 ,获得积分10
39秒前
情怀应助ZWK采纳,获得10
40秒前
41秒前
生木发布了新的文献求助10
43秒前
Agu完成签到,获得积分10
45秒前
46秒前
mingjie发布了新的文献求助10
47秒前
Agu发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
49秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881284
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735602
捐赠科研通 3148665
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087