已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems

计算机科学 强化学习 调度(生产过程) 试验台 工作车间 作业车间调度 人工智能 分布式计算 运筹学 工业工程 机器学习 流水车间调度 工程类 运营管理 地铁列车时刻表 操作系统 计算机网络
作者
Yi Zhang,Haihua Zhu,Dunbing Tang,Tong Zhou,Yong Gui
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:78: 102412-102412 被引量:159
标识
DOI:10.1016/j.rcim.2022.102412
摘要

Personalized orders bring challenges to the production paradigm, and there is an urgent need for the dynamic responsiveness and self-adjustment ability of the workshop. Traditional dispatching rules and heuristic algorithms solve the production planning and control problems by making schedules. However, the previous methods cannot work well in a changeable workshop environment when encountering a large number of stochastic disturbances of orders and resources. Recently, the potential of artificial intelligence (AI) algorithms in solving the dynamic scheduling problem has attracted researchers' attention. Therefore, this paper presents a multi-agent manufacturing system based on deep reinforcement learning (DRL), which integrates the self-organization mechanism and self-learning strategy. Firstly, the manufacturing equipment in the workshop is constructed as an equipment agent with the support of edge computing node, and an improved contract network protocol (CNP) is applied to guide the cooperation and competition among multiple agents, so as to complete personalized orders efficiently. Secondly, a multi-layer perceptron is employed to establish the decision-making module called AI scheduler inside the equipment agent. According to the perceived workshop state information, AI scheduler intelligently generates an optimal production strategy to perform task allocation. Then, based on the collected sample trajectories of scheduling process, AI scheduler is periodically trained and updated through the proximal policy optimization (PPO) algorithm to improve its decision-making performance. Finally, in the multi-agent manufacturing system testbed, dynamic events such as stochastic job insertions and unpredictable machine failures are considered in the verification experiments. The experimental results show that the proposed method is capable of obtaining the scheduling solutions that meet various performance metrics, as well as dealing with resource or task disturbances efficiently and autonomously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxwwwxl完成签到,获得积分10
1秒前
1秒前
自信人生二百年完成签到,获得积分10
2秒前
3秒前
lxwwwxl发布了新的文献求助10
3秒前
甜美的秋尽完成签到,获得积分10
7秒前
燕绥发布了新的文献求助10
8秒前
8秒前
倪妮发布了新的文献求助10
9秒前
倪妮发布了新的文献求助30
9秒前
Lyw完成签到 ,获得积分10
10秒前
拉扣发布了新的文献求助10
13秒前
倪妮发布了新的文献求助30
14秒前
Zoom应助科研通管家采纳,获得30
18秒前
香蕉觅云应助科研通管家采纳,获得30
19秒前
英姑应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
mtt应助科研通管家采纳,获得10
19秒前
倪妮发布了新的文献求助30
19秒前
20秒前
20秒前
20秒前
Zoom应助ansei采纳,获得30
20秒前
倪妮发布了新的文献求助30
20秒前
倪妮发布了新的文献求助10
20秒前
倪妮发布了新的文献求助10
20秒前
倪妮发布了新的文献求助10
21秒前
倪妮发布了新的文献求助10
21秒前
倪妮发布了新的文献求助10
21秒前
倪妮发布了新的文献求助10
23秒前
倪妮发布了新的文献求助10
23秒前
不安红豆发布了新的文献求助10
23秒前
善学以致用应助拉扣采纳,获得10
25秒前
HDrinnk完成签到,获得积分10
25秒前
乐乐应助LX采纳,获得10
28秒前
赘婿应助windy采纳,获得10
29秒前
NexusExplorer应助木林山水采纳,获得10
32秒前
Akim应助不安红豆采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934907
求助须知:如何正确求助?哪些是违规求助? 4202605
关于积分的说明 13058103
捐赠科研通 3977151
什么是DOI,文献DOI怎么找? 2179393
邀请新用户注册赠送积分活动 1195525
关于科研通互助平台的介绍 1106915