重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An improved YOLO network for unopened cotton boll detection in the field

计算机科学 领域(数学) 农业工程 任务(项目管理) 人工智能 产量(工程) 鉴定(生物学) 数学 工程类 植物 生物 冶金 材料科学 系统工程 纯数学
作者
Yan Zhang,Gongping Yang,Yikun Liu,Chong Wang,Yilong Yin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (3): 2193-2206 被引量:30
标识
DOI:10.3233/jifs-211514
摘要

Detection of cotton bolls in the field environments is one of crucial techniques for many precision agriculture applications, including yield estimation, disease and pest recognition and automatic harvesting. Because of the complex conditions, such as different growth periods and occlusion among leaves and bolls, detection in the field environments is a task with considerable challenges. Despite this, the development of deep learning technologies have shown great potential to effectively solve this task. In this work, we propose an Improved YOLOv5 network to detect unopened cotton bolls in the field accurately and with lower cost, which combines DenseNet, attention mechanism and Bi-FPN. Besides, we modify the architecture of the network to get larger feature maps from shallower network layers to enhance the ability of detecting bolls due to the size of cotton boll is generally small. We collect image data of cotton in Aodu Farm in Xinjiang Province, China and establish a dataset containing 616 high-resolution images. The experiment results show that the proposed method is superior to the original YOLOv5 model and other methods such as YOLOv3,SSD and FasterRCNN considering the detection accuracy, computational cost, model size and speed at the same time. The detection of cotton boll can be further applied for different purposes such as yield prediction and identification of diseases and pests in earlier stage which can effectively help farmers take effective approaches in time and reduce the crop losses and therefore increase production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
言堇发布了新的文献求助10
1秒前
Han发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
jingjing发布了新的文献求助10
3秒前
传奇3应助一笑采纳,获得10
3秒前
健壮的迎蕾完成签到 ,获得积分10
4秒前
深情安青应助月亮不营业采纳,获得10
4秒前
cjc发布了新的文献求助20
4秒前
李爱国应助蜜意采纳,获得20
5秒前
科研通AI6应助红岸采纳,获得100
5秒前
xuan完成签到,获得积分10
5秒前
ruiz发布了新的文献求助10
5秒前
彭于晏应助ll采纳,获得10
6秒前
7秒前
7秒前
田様应助甜甜玫瑰采纳,获得10
7秒前
8秒前
小二郎应助lvben采纳,获得10
8秒前
12345678完成签到,获得积分20
8秒前
慈祥的爆米花完成签到,获得积分10
8秒前
钙帮弟子完成签到,获得积分10
9秒前
9秒前
9秒前
多巴胺发布了新的文献求助10
10秒前
大胆易巧完成签到 ,获得积分10
10秒前
饭饭完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
桐桐应助wzh采纳,获得10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
YX发布了新的文献求助10
13秒前
rose发布了新的文献求助10
13秒前
浮游应助如此纠结采纳,获得10
13秒前
SciGPT应助三跳采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673