DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation

分割 计算机科学 特征(语言学) 比例(比率) 图像分割 人工智能 哲学 语言学 物理 量子力学
作者
Xinzi Sun,Yuanchang Xie,Liming Jiang,Yu Cao,Benyuan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18392-18403 被引量:149
标识
DOI:10.1109/tits.2022.3158670
摘要

Cracks are important indicators of pavement structural and operational conditions. Early pavement crack detection and treatments can help extend pavement service life, reduce fuel consumption, and improve safety and ride quality. Pavement distress surveys have traditionally been performed manually by visually inspecting the roads, which is labor-intensive and time-consuming. Therefore, computer-vision-based automated crack detection has great practical significance in pavement maintenance and traffic safety. Traditional image processing techniques are sensitive to noise in images and are thus likely to miss detecting some cracks due to the crack texture variety, complex lighting conditions, and various similar but irrelevant objects on the road. This paper adopts and enhances DeepLabv3+, a popular deep learning framework for semantic image segmentation, for road pavement crack detection. We propose a multi-scale attention module in the decoder of DeepLabv3+ to generate an attention mask and dynamically assign weights between high-level and low-level feature maps. Compared with fixed weights across different features, the dynamic weights strategy can assign more reasonable weights to different feature maps. Ablation experiments show that the attention mask can effectively help the model better combine multi-scale features and generate more accurate pavement crack segmentation results. The proposed method achieves state-of-the-art results on three benchmarks, including Crack500, DeepCrack, and FMA (Fitchburg Municipal Airport) datasets. We further test it on pavement crack images captured by smartphones, and the results show that it provides a viable approach to road pavement crack segmentation in practice with excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌蘑菇完成签到,获得积分10
1秒前
2秒前
兴奋爆米花完成签到,获得积分10
3秒前
hkh发布了新的文献求助10
3秒前
carl完成签到 ,获得积分10
4秒前
乐乐应助DSC采纳,获得10
4秒前
鼓得文完成签到 ,获得积分10
4秒前
keep完成签到,获得积分10
5秒前
6秒前
星海殇完成签到 ,获得积分0
6秒前
CompJIN发布了新的文献求助10
8秒前
大虫子完成签到,获得积分10
11秒前
DQ完成签到,获得积分10
12秒前
Henry完成签到,获得积分10
13秒前
13秒前
CompJIN完成签到,获得积分10
14秒前
小猫咪完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
CQ完成签到 ,获得积分10
17秒前
所所应助roywin采纳,获得10
18秒前
19秒前
孤独听雨的猫完成签到 ,获得积分10
19秒前
负责的莫茗完成签到 ,获得积分10
19秒前
Ava应助安静曼云采纳,获得10
19秒前
FashionBoy应助j九良采纳,获得10
19秒前
20秒前
20秒前
楼一笑发布了新的文献求助10
24秒前
24秒前
幸运花花发布了新的文献求助10
26秒前
贺旭溪完成签到,获得积分10
26秒前
ikun0000完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
泽林完成签到,获得积分10
27秒前
坦率雁卉完成签到,获得积分10
28秒前
31秒前
105完成签到 ,获得积分10
31秒前
清爽老九发布了新的文献求助20
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862526
求助须知:如何正确求助?哪些是违规求助? 3405082
关于积分的说明 10642764
捐赠科研通 3128370
什么是DOI,文献DOI怎么找? 1725295
邀请新用户注册赠送积分活动 830863
科研通“疑难数据库(出版商)”最低求助积分说明 779454