Multi-objective optimization of TPMS-based heat exchangers for low-temperature waste heat recovery

废物管理 热交换器 热回收通风 回热器 机械工程 工艺工程 余热回收装置 余热 环境科学 材料科学 工程类
作者
Reza Attarzadeh,Seyed-Hosein Attarzadeh-Niaki,Christophe Duwig
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:212: 118448-118448 被引量:88
标识
DOI:10.1016/j.applthermaleng.2022.118448
摘要

The transformation to a truly sustainable energy system will require taking better advantage of the waste heat. Integrating heat exchangers with the triply periodic minimal surface (TPMS) is a promising and efficient way to build waste heat recovery systems that harness heat emissions from the low pitch thermal systems. This is mainly due to the low hydrodynamic resistance and pressure drop in the TPMS while securing good heat transfer at low-temperature gradient. This study establishes a computational design and analysis of heat and mass transfer inside a heat exchanger based on the TPMS structure and determine thermal effectiveness, heat transfer coefficient, and pressure drop inside the channel. The non-linearity dependence of results to several design variables makes obtaining the optimal design configuration solely using conventional CFD or experimental study nearly impossible. Hence, a multi-objective optimization workflow based on a Genetic Algorithm for laminar flow is employed to reveal the underlying relationships between design variables for the optimal configurations. The results illustrate the local sensitivity of important parameters such as the heat transfer coefficient, Nusselt number, and thermal performance of the heat exchanger against various design variables. It is shown that the pressure drop is directly affected by gas inlet velocity, viscosity, and density, from high to low, respectively. The Pareto frontiers for the optimal thermal performance are extracted, and the correlation between design objectives is determined. This methodology provides a promising framework for heat exchangers' design analysis, including multi-objective goals and design constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Replikant发布了新的文献求助10
2秒前
3秒前
扎心发布了新的文献求助10
4秒前
梅子完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
jun发布了新的文献求助20
7秒前
LIKO完成签到,获得积分10
9秒前
10秒前
M跃发布了新的文献求助10
10秒前
11秒前
汉堡包应助xzy采纳,获得10
12秒前
12秒前
下雨天发布了新的文献求助10
13秒前
木头鱼发布了新的文献求助10
13秒前
ajin发布了新的文献求助50
14秒前
庸人自扰完成签到,获得积分10
16秒前
cgs发布了新的文献求助10
16秒前
科研通AI5应助M跃采纳,获得30
19秒前
小六六完成签到,获得积分20
20秒前
20秒前
22秒前
Devoted发布了新的文献求助10
26秒前
fh完成签到,获得积分20
30秒前
JerryZ发布了新的文献求助10
31秒前
NexusExplorer应助Devoted采纳,获得10
33秒前
量子星尘发布了新的文献求助20
33秒前
fh发布了新的文献求助30
34秒前
34秒前
跳跃豆芽发布了新的文献求助40
37秒前
37秒前
39秒前
思源应助Dr_zsc采纳,获得10
40秒前
Ma发布了新的文献求助10
40秒前
害羞的醉卉完成签到 ,获得积分10
42秒前
赘婿应助扎心采纳,获得10
44秒前
bkagyin应助elizabeth339采纳,获得10
44秒前
lds发布了新的文献求助10
46秒前
隐形曼青应助shine采纳,获得10
47秒前
竹筏过海应助梵克Q宝采纳,获得50
47秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862963
求助须知:如何正确求助?哪些是违规求助? 3405518
关于积分的说明 10644924
捐赠科研通 3129070
什么是DOI,文献DOI怎么找? 1725612
邀请新用户注册赠送积分活动 831127
科研通“疑难数据库(出版商)”最低求助积分说明 779615