A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity

计算机科学 人工智能 人工神经网络 运动(音乐) 神经科学 模式识别(心理学) 生物 物理 声学
作者
Neelesh Kumar,Konstantinos P. Michmizos
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:14
标识
DOI:10.1038/s41598-022-05079-0
摘要

Abstract The effective decoding of movement from non-invasive electroencephalography (EEG) is essential for informing several therapeutic interventions, from neurorehabilitation robots to neural prosthetics. Deep neural networks are most suitable for decoding real-time data but their use in EEG is hindered by the gross classes of motor tasks in the currently available datasets, which are solvable even with network architectures that do not require specialized design considerations. Moreover, the weak association with the underlying neurophysiology limits the generalizability of modern networks for EEG inference. Here, we present a neurophysiologically interpretable 3-dimensional convolutional neural network (3D-CNN) that captured the spatiotemporal dependencies in brain areas that get co-activated during movement. The 3D-CNN received topography-preserving EEG inputs, and predicted complex components of hand movements performed on a plane using a back-drivable rehabilitation robot, namely (a) the reaction time (RT) for responding to stimulus (slow or fast), (b) the mode of movement (active or passive, depending on whether there was an assistive force provided by the apparatus), and (c) the orthogonal directions of the movement (left, right, up, or down). We validated the 3D-CNN on a new dataset that we acquired from an in-house motor experiment, where it achieved average leave-one-subject-out test accuracies of 79.81%, 81.23%, and 82.00% for RT, active vs. passive, and direction classifications, respectively. Our proposed method outperformed the modern 2D-CNN architecture by a range of 1.1% to 6.74% depending on the classification task. Further, we identified the EEG sensors and time segments crucial to the classification decisions of the network, which aligned well with the current neurophysiological knowledge on brain activity in motor planning and execution tasks. Our results demonstrate the importance of biological relevance in networks for an accurate decoding of EEG, suggesting that the real-time classification of other complex brain activities may now be within our reach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩半蕾完成签到,获得积分20
2秒前
3秒前
4秒前
顺利兰完成签到 ,获得积分10
5秒前
chennian应助YQQ采纳,获得10
6秒前
7秒前
JiayiMu完成签到 ,获得积分10
7秒前
10秒前
12秒前
很牛的ID完成签到,获得积分20
13秒前
小吃完成签到,获得积分10
15秒前
SCIfafafafa发布了新的文献求助10
16秒前
不爱科研的科研小菜鸡完成签到,获得积分20
16秒前
张颖完成签到 ,获得积分10
16秒前
aa发布了新的文献求助10
17秒前
pluto应助xxhhh采纳,获得10
17秒前
很牛的ID发布了新的文献求助20
17秒前
tengfei应助真实的静珊采纳,获得10
18秒前
18秒前
21秒前
保安队长发布了新的文献求助10
21秒前
xxx7749发布了新的文献求助10
24秒前
25秒前
超级诗桃发布了新的文献求助10
26秒前
科研小白发布了新的文献求助10
27秒前
wxy发布了新的文献求助10
29秒前
Lucas应助雪山飞龙采纳,获得10
30秒前
SZ完成签到,获得积分20
31秒前
PLN完成签到 ,获得积分20
32秒前
32秒前
33秒前
tjxhtj完成签到,获得积分10
33秒前
34秒前
luckytuantuan发布了新的文献求助10
35秒前
大模型应助123采纳,获得10
35秒前
qqy发布了新的文献求助10
36秒前
斯文天曼发布了新的文献求助10
37秒前
海心完成签到 ,获得积分10
39秒前
kk关闭了kk文献求助
39秒前
雪山飞龙完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757