Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm

声发射 随机森林 计算机科学 熵(时间箭头) 往复运动 人工智能 算法 材料科学 方位(导航) 复合材料 物理 量子力学
作者
Sergey Shevchik,Fatemeh Saeidi,Bastian Meylan,Kilian Wasmer
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1541-1553 被引量:64
标识
DOI:10.1109/tii.2016.2635082
摘要

Scuffing is one of the most problematic failure mechanisms in lubricated mechanical components. It is a sudden and almost not predictable failure that often leads to extensive cost in terms of damages and/or delay in production lines. This study presents a promising solution that can prevent scuffing for the machinery industry in the future. To achieve this goal, a signal processing approach by means of an acoustic emission is introduced for the prediction of scuffing. An acoustic dataset was collected from metallic surfaces reciprocating under a constant load (typical conditions for semi journal bearings). The coefficient of friction values were measured during the entire experiments and were referred to as the ground truth of the momentary surface state. Based on the friction behavior, three friction regimes were defined that are running-in, steady-state, and scuffing. The present approach is based on tracking the changes in acoustic emission by means of three sets of wavelet-derived features. Those features include: 1) energy, 2) entropy, and 3) statistical information about the content of acoustic emission and the response of each feature to the different friction regimes was individually investigated. The applicability of machine learning classification and regression was studied for scuffing prediction. Both approaches were applied separately but can be unified together to increase the prediction time interval of surface failure. For classification, an extra friction regime was introduced designating as pre-scuffing and is defined as a time span of 3 min before the real surface failure. Random forest classifier was used to differentiate the features from the different friction regime. The best performance in classification of features from pre-scuffing regime reached a confidence level as high as 84%. In regression approach, the extracted features sequences were used together with random forest regressor. Our strategy allowed predicting scuffing up to 5 min preceding its real occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy完成签到,获得积分20
刚刚
小卷完成签到,获得积分10
1秒前
复杂的凝冬完成签到,获得积分10
1秒前
故意的傲柏完成签到 ,获得积分10
1秒前
大岩石完成签到,获得积分10
2秒前
qqqq发布了新的文献求助20
3秒前
jia完成签到,获得积分10
3秒前
留白完成签到 ,获得积分10
3秒前
慕青应助qcl采纳,获得10
3秒前
exosome完成签到,获得积分10
3秒前
李哈哈完成签到,获得积分10
3秒前
滴滴滴完成签到,获得积分10
4秒前
敏感的凝天完成签到,获得积分10
4秒前
Orange应助xingxing采纳,获得10
4秒前
飞云完成签到,获得积分10
4秒前
5秒前
三人水明完成签到 ,获得积分10
5秒前
pangpang完成签到,获得积分10
5秒前
司空笑白完成签到,获得积分10
5秒前
平平无奇种花小天才完成签到,获得积分10
6秒前
张萌完成签到 ,获得积分10
6秒前
6秒前
FashionBoy应助小卷采纳,获得10
6秒前
在水一方应助Hy.采纳,获得10
7秒前
科研不是科幻完成签到,获得积分10
7秒前
bkagyin应助xiaobai采纳,获得10
8秒前
李哈哈发布了新的文献求助10
9秒前
领导范儿应助锅巴采纳,获得10
9秒前
9秒前
andy发布了新的文献求助10
10秒前
顶呱呱完成签到 ,获得积分10
10秒前
可靠的南霜完成签到 ,获得积分10
10秒前
沉醉完成签到 ,获得积分10
11秒前
hohokuz完成签到,获得积分10
11秒前
秦磊完成签到,获得积分10
11秒前
fvnsj完成签到,获得积分10
12秒前
欧阳静芙完成签到,获得积分10
12秒前
杨冰发布了新的文献求助10
12秒前
默默诗云完成签到,获得积分10
13秒前
小蘑菇应助Li采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609