Forecasting Spoken Language Development in Children With Cochlear Implants Using Preimplant Magnetic Resonance Imaging

人工耳蜗植入 听力学 口语 磁共振成像 医学 语言发展 人工耳蜗植入术 植入 感音神经性聋 听力损失 语言习得 言语感知 重度听力损失 厄尔尼诺现象 语言评估 心理学 神经影像学 医学物理学 梅德林 助听器
作者
Yanlin Wang,Di Yuan,Shani Dettman,Dawn Choo,Emily Shimeng Xu,Denise Thomas,Maura E. Ryan,Patrick C. M. Wong,Nancy M. Young
出处
期刊:JAMA otolaryngology-- head & neck surgery [American Medical Association]
标识
DOI:10.1001/jamaoto.2025.4694
摘要

Importance Cochlear implants substantially improve spoken language in children with severe to profound sensorineural hearing loss, yet outcomes remain more variable than in children with healthy hearing. This variability cannot be reliably predicted for individual children using age at implant or residual hearing. Development of an artificial intelligence clinical tool to predict which patients will exhibit poorer improvements in language skills may enable an individualized approach to improve language outcomes. Objective To compare the accuracy of traditional machine learning (ML) with deep transfer learning (DTL) algorithms to predict post–cochlear implant spoken language development in children with bilateral sensorineural hearing loss using a binary classification model of high vs low language improvers. Design, Setting, and Participants This multicenter diagnostic study enrolled children from English-, Spanish-, and Cantonese-speaking families across 3 independent clinical centers in the US, Australia, and Hong Kong. A total of 278 children with cochlear implants were enrolled from July 2009 to March 2022 with 1 to 3 years of post–cochlear implant outcomes data. All children underwent pre–cochlear implant 3-dimensional volumetric brain magnetic resonance imaging (MRI). ML and DTL algorithms were trained to predict high vs low language improvers in children with cochlear implants using neuroanatomical features from presurgical brain MRI. Data were analyzed from August 2023 to April 2025. Exposures Cochlear implants. Main Outcomes and Measures The accuracy, sensitivity, and specificity of prediction models based on brain neuroanatomic features using traditional ML and DTL learning. Results Of 278 children, 137 (49.3%) were female, and the mean (SD) age at cochlear implant was 25.7 (18.8) months. DTL prediction models using bilinear attention-based fusion strategy achieved an accuracy of 92.39% (95% CI, 90.70%-94.07%), sensitivity of 91.22% (95% CI, 89.98%-92.47%), specificity of 93.56% (95% CI, 90.91%-96.21%), and area under the curve of 0.98 (95% CI, 0.97-0.99). DTL outperformed traditional ML models in all outcome measures. Conclusions and Relevance The results of this diagnostic study suggest that DTL prediction of language improvement on the individual child level using neuroanatomic features demonstrates greater accuracy, sensitivity, and specificity than traditional ML prediction. DTL was substantially improved by direct capture of discriminative and task-specific information that are advantages of representation learning enabled by this approach vs ML. The results support the feasibility of a single DTL prediction model for language prediction for children served by cochlear implant programs worldwide. Prediction of low improvement may enable targeted early and customized intervention to improve language.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饼大王发布了新的文献求助10
1秒前
田様应助无语的代真采纳,获得10
1秒前
3秒前
4秒前
twotwomi完成签到,获得积分10
5秒前
6秒前
15639151616完成签到,获得积分20
8秒前
大个应助Frank采纳,获得10
8秒前
Jasper应助allezallez采纳,获得10
8秒前
9秒前
10秒前
苏文涛完成签到,获得积分10
11秒前
11秒前
spc68应助谨慎的寒松采纳,获得10
11秒前
spc68应助谨慎的寒松采纳,获得10
11秒前
Lingkoi发布了新的文献求助10
11秒前
spc68应助谨慎的寒松采纳,获得10
11秒前
spc68应助谨慎的寒松采纳,获得10
12秒前
spc68应助谨慎的寒松采纳,获得10
12秒前
12秒前
大方的云朵完成签到,获得积分10
12秒前
饼大王完成签到,获得积分10
12秒前
13秒前
cobo完成签到,获得积分10
14秒前
15秒前
投必快业必毕完成签到,获得积分10
15秒前
慕青应助qingqing采纳,获得20
16秒前
16秒前
16秒前
16秒前
慕青应助Angel采纳,获得10
17秒前
xiehexin完成签到,获得积分10
17秒前
修越发布了新的文献求助10
19秒前
大个应助Lignin采纳,获得10
19秒前
xiehexin发布了新的文献求助10
22秒前
Yong完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
赘婿应助L_chen采纳,获得10
25秒前
咖可乐发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648