串联
终端(电信)
互连
光电子学
前端和后端
材料科学
太阳能电池
计算机科学
电信
操作系统
复合材料
作者
Manuel Schnabel,Michael Rienäcker,Emily L. Warren,John F. Geisz,Robby Peibst,Paul Stradins,Adele C. Tamboli
标识
DOI:10.1109/jphotov.2018.2865175
摘要
Tandem or multijunction solar cells are a promising method to circumvent the efficiency limit of single-junction solar cells, but there is ongoing debate over how best to interconnect the subcells in a tandem cell. In addition to four-terminal and two-terminal tandem cell architectures, a new three-terminal tandem cell architecture has recently been demonstrated, which features a standard two-terminal (front-back) circuit as well as an interdigitated back contact (IBC) circuit connected to the bottom cell. It has no middle contacts, and thus, maintains some of the simplicity of a two-terminal tandem. In this study, we measure four-terminal GaInP//Si and GaInP/GaAs//Si tandem cells in four-terminal and three-terminal configurations by connecting wires to mimic a three-terminal architecture. We demonstrate that both modes allow the same efficiencies exceeding 30% to be attained. Furthermore, we show that the IBC circuit not only collects excess power from the bottom cell, but that it can inject power into the bottom cell if it is current limiting the front-back circuit, enabling four-terminal performance in monolithic structures, regardless of which cell delivers less current.
科研通智能强力驱动
Strongly Powered by AbleSci AI