Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection

假阳性悖论 计算机科学 卷积神经网络 Python(编程语言) 模式识别(心理学) 人工智能 结核(地质) 假阳性率 边距(机器学习) 特征(语言学) 机器学习 生物 语言学 操作系统 哲学 古生物学
作者
Bum-Chae Kim,Jee Seok Yoon,Jun-Sik Choi,Heung‐Il Suk
出处
期刊:Neural Networks [Elsevier BV]
卷期号:115: 1-10 被引量:72
标识
DOI:10.1016/j.neunet.2019.03.003
摘要

Lung cancer is a global and dangerous disease, and its early detection is crucial for reducing the risks of mortality. In this regard, it has been of great interest in developing a computer-aided system for pulmonary nodules detection as early as possible on thoracic CT scans. In general, a nodule detection system involves two steps: (i) candidate nodule detection at a high sensitivity, which captures many false positives and (ii) false positive reduction from candidates. However, due to the high variation of nodule morphological characteristics and the possibility of mistaking them for neighboring organs, candidate nodule detection remains a challenge. In this study, we propose a novel Multi-scale Gradual Integration Convolutional Neural Network (MGI-CNN), designed with three main strategies: (1) to use multi-scale inputs with different levels of contextual information, (2) to use abstract information inherent in different input scales with gradual integration, and (3) to learn multi-stream feature integration in an end-to-end manner. To verify the efficacy of the proposed network, we conducted exhaustive experiments on the LUNA16 challenge datasets by comparing the performance of the proposed method with state-of-the-art methods in the literature. On two candidate subsets of the LUNA16 dataset, i.e., V1 and V2, our method achieved an average CPM of 0.908 (V1) and 0.942 (V2), outperforming comparable methods by a large margin. Our MGI-CNN is implemented in Python using TensorFlow and the source code is available from https://github.com/ku-milab/MGICNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
山有扶苏完成签到,获得积分10
1秒前
1秒前
蓦然回首完成签到,获得积分10
2秒前
柯柯发布了新的文献求助10
3秒前
0Miles发布了新的文献求助10
4秒前
TRY发布了新的文献求助10
4秒前
欣喜的冥王星完成签到,获得积分20
4秒前
小莳发布了新的文献求助10
5秒前
5秒前
5秒前
Kirito应助彩色方盒采纳,获得10
6秒前
7秒前
善学以致用应助0Miles采纳,获得10
9秒前
vicissitude发布了新的文献求助10
9秒前
10秒前
13秒前
凉拌黄瓜完成签到,获得积分10
13秒前
13秒前
shinn发布了新的文献求助10
13秒前
搞怪柔完成签到,获得积分10
13秒前
快快毕业完成签到 ,获得积分10
15秒前
王加通完成签到,获得积分10
16秒前
大有阳光发布了新的文献求助10
16秒前
王雪完成签到,获得积分10
17秒前
18秒前
谨慎秋珊完成签到 ,获得积分10
18秒前
281911480完成签到,获得积分10
18秒前
自然松完成签到,获得积分10
18秒前
凉拌黄瓜发布了新的文献求助30
18秒前
化羽归尘完成签到,获得积分10
19秒前
尽舜尧完成签到,获得积分10
21秒前
21秒前
22秒前
吃葡萄不吐完成签到,获得积分10
22秒前
岁岁完成签到 ,获得积分10
22秒前
22秒前
shinn完成签到,获得积分10
23秒前
大有阳光完成签到,获得积分10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846158
求助须知:如何正确求助?哪些是违规求助? 3388556
关于积分的说明 10553391
捐赠科研通 3109110
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824732
科研通“疑难数据库(出版商)”最低求助积分说明 774982