Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification

分类器(UML) 组学 人工智能 计算机科学 机器学习 维数之咒 监督学习 数据挖掘 模式识别(心理学) 人工神经网络 生物信息学 生物
作者
Xiaoyu Zhang,Jingqing Zhang,Kai Sun,Xian Yang,Chengliang Dai,Yike Guo
标识
DOI:10.1109/bibm47256.2019.8983228
摘要

Different aspects of a clinical sample can be revealed by multiple types of omics data. Integrated analysis of multi-omics data provides a comprehensive view of patients, which has the potential to facilitate more accurate clinical decision making. However, omics data are normally high dimensional with large number of molecular features and relatively small number of available samples with clinical labels. The "dimensionality curse" makes it challenging to train a machine learning model using high dimensional omics data like DNA methylation and gene expression profiles. Here we propose an end-to-end deep learning model called OmiVAE to extract low dimensional features and classify samples from multi-omics data. OmiVAE combines the basic structure of variational autoencoders with a classification network to achieve task-oriented feature extraction and multi-class classification. The training procedure of OmiVAE is comprised of an unsupervised phase without the classifier and a supervised phase with the classifier. During the unsupervised phase, a hierarchical cluster structure of samples can be automatically formed without the need for labels. And in the supervised phase, OmiVAE achieved an average classification accuracy of 97.49% after 10-fold cross-validation among 33 tumour types and normal samples, which shows better performance than other existing methods. The OmiVAE model learned from multi-omics data outperformed that using only one type of omics data, which indicates that the complementary information from different omics datatypes provides useful insights for biomedical tasks like cancer classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
9秒前
笑笑完成签到,获得积分20
10秒前
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
11秒前
所所应助科研通管家采纳,获得30
11秒前
Akim应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
勿明应助科研通管家采纳,获得30
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
科研应助科研通管家采纳,获得10
12秒前
坚定碧完成签到 ,获得积分10
13秒前
积木123完成签到,获得积分10
14秒前
成成完成签到,获得积分0
15秒前
欣慰的天荷完成签到 ,获得积分10
16秒前
脑洞疼应助科研小破白菜采纳,获得10
17秒前
六尺巷发布了新的文献求助10
21秒前
22秒前
24秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
27秒前
晓宇发布了新的文献求助10
28秒前
yeluoyezhi完成签到,获得积分10
32秒前
Owen应助箱子采纳,获得10
37秒前
39秒前
深情安青应助aura采纳,获得10
49秒前
UUUUUp完成签到,获得积分10
51秒前
CipherSage应助jason采纳,获得10
58秒前
小正完成签到,获得积分10
1分钟前
归尘应助豆豆采纳,获得10
1分钟前
土豆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385