SP2: Rapid and Automatable Contaminant Removal from Peptide Samples for Proteomic Analyses

色谱法 蛋白质组学 计算生物学 化学 生物 生物化学 基因
作者
Matthew Waas,Michaela Pereckas,Rachel A. Jones,Christopher Ashwood,Rebekah L. Gundry
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:18 (4): 1644-1656 被引量:50
标识
DOI:10.1021/acs.jproteome.8b00916
摘要

Peptide cleanup is essential for the removal of contaminating substances that may be introduced during sample preparation steps in bottom-up proteomic workflows. Recent studies have described benefits of carboxylate-modified paramagnetic particles over traditional reversed-phase methods for detergent and polymer removal, but challenges with reproducibility have limited the widespread implementation of this approach among laboratories. To overcome these challenges, the current study systematically evaluated key experimental parameters regarding the use of carboxylate-modified paramagnetic particles and determined those that are critical for maximum performance and peptide recovery and those for which the protocol is tolerant to deviation. These results supported the development of a detailed, easy-to-use standard operating protocol, termed SP2, which can be applied to remove detergents and polymers from peptide samples while concentrating the sample in solvent that is directly compatible with typical LC–MS workflows. We demonstrate that SP2 can be applied to phosphopeptides and glycopeptides and that the approach is compatible with robotic liquid handling for automated sample processing. Altogether, the results of this study and accompanying detailed operating protocols for both manual and automated processing are expected to facilitate reproducible implementation of SP2 for various proteomics applications and will especially benefit core or shared resource facilities where unknown or unexpected contaminants may be particularly problematic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaxia发布了新的文献求助10
1秒前
英姑应助亚黑采纳,获得10
1秒前
2秒前
2秒前
kingwill举报sssss求助涉嫌违规
3秒前
杜若发布了新的文献求助10
4秒前
小小发布了新的文献求助10
5秒前
无花果应助悲凉的笑卉采纳,获得10
6秒前
浮游应助榴莲柿子茶采纳,获得10
6秒前
大个应助榴莲柿子茶采纳,获得10
6秒前
kou发布了新的文献求助10
6秒前
123应助南南采纳,获得10
7秒前
邵宏伟应助南南采纳,获得20
7秒前
7秒前
555发布了新的文献求助10
7秒前
Hanqi完成签到 ,获得积分10
7秒前
明明完成签到,获得积分10
8秒前
8秒前
LL完成签到,获得积分10
8秒前
8秒前
8秒前
gk发布了新的文献求助10
9秒前
ding应助大熊采纳,获得10
11秒前
11秒前
keep完成签到 ,获得积分10
11秒前
高高发布了新的文献求助10
12秒前
13秒前
Orange应助sy采纳,获得60
13秒前
badercao完成签到,获得积分10
13秒前
钙钛矿-1发布了新的文献求助10
14秒前
蔡徐坤完成签到,获得积分10
14秒前
亚黑发布了新的文献求助10
14秒前
杜若完成签到,获得积分20
14秒前
15秒前
周士乐完成签到,获得积分10
16秒前
沉默的不惜完成签到,获得积分10
17秒前
17秒前
英姑应助橘涂采纳,获得10
18秒前
科研通AI5应助cocj采纳,获得10
18秒前
悲凉的笑卉完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194515
求助须知:如何正确求助?哪些是违规求助? 4376780
关于积分的说明 13630290
捐赠科研通 4231860
什么是DOI,文献DOI怎么找? 2321258
邀请新用户注册赠送积分活动 1319419
关于科研通互助平台的介绍 1269800