Spine Explorer: a deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images

医学 矢状面 腰椎 脊柱(分子生物学) 腰椎 腰椎 解剖 口腔正畸科 人工智能 外科 计算机科学 生物信息学 生物
作者
Jiawei Huang,Haotian Shen,Jialong Wu,Xiaojian Hu,Zhiwei Zhu,Xiaoqiang Lv,Yong Liu,Yue Wang
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:20 (4): 590-599 被引量:77
标识
DOI:10.1016/j.spinee.2019.11.010
摘要

BACKGROUND CONTEXT Although quantitative measurements improve the assessment of disc degeneration, acquirement of quantitative measurements relies on manual segmentation on lumbar magnetic resonance images (MRIs), which may introduce subjective bias. To date, only a few semiautomatic systems have been developed to quantify important components on MRIs. PURPOSE To develop a deep learning based program (Spine Explorer) for automated segmentation and quantification of the vertebrae and intervertebral discs on lumbar spine MRIs. STUDY DESIGN Cross-sectional study. PATIENT SAMPLE The study was extended on the Hangzhou Lumbar Spine Study, a population-based study of mainland Chinese with focuses on lumbar degenerative changes. From this population-based database, 50 sets lumbar MRIs were randomly selected as training dataset, and another 50 as test dataset. OUTCOME MEASURES Regions of vertebrae and discs were manually segmented on T2W sagittal MRIs to train a convolutional neural network for automated segmentation. Intersection-over-union was calculated to evaluate segmentation performance. Computational definitions were proposed to acquire quantitative morphometric and signal measurements for lumbar vertebrae and discs. MRIs in the test dataset were automatically measured with Spine Explorer and manually with ImageJ. METHODS Intraclass correlation coefficient (ICC) were calculated to examine inter-software agreements. Correlations between disc measurements and Pfirrmann score as well as age were examined to assess measurement validity. RESULTS The trained Spine Explorer automatically segments and measures a lumbar MRI in half a second, with mean Intersection-over-union of 94.7% and 92.6% for the vertebra and disc, respectively. For both vertebra and disc measurements acquired with Spine Explorer and ImageJ, the agreements were excellent (ICC=0.81~1.00). Disc measurements significantly correlated to Pfirrmann score, and greater age was associated with greater anterior disc bulging area (r=0.35~0.44) and fewer signal measurements (r=−0.62~−0.77) as automatically acquired with Spine Explorer. CONCLUSIONS Spine Explorer is an efficient, accurate, and reliable tool to acquire comprehensive quantitative measurements for lumbar vertebra and disc. Implication of such deep learning based program can facilitate clinical studies of the lumbar spine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗小雯子完成签到,获得积分10
1秒前
黑猫发布了新的文献求助10
1秒前
hhhhh发布了新的文献求助10
2秒前
冷傲博关注了科研通微信公众号
3秒前
勤劳梦凡发布了新的文献求助10
3秒前
Elin完成签到,获得积分10
3秒前
sheep完成签到,获得积分20
3秒前
探寻完成签到,获得积分10
3秒前
4秒前
Reef驳回了冰魂应助
5秒前
及尔完成签到,获得积分10
5秒前
东十八发布了新的文献求助30
5秒前
木湾发布了新的文献求助30
5秒前
金金完成签到,获得积分10
5秒前
要受到80斤完成签到,获得积分10
5秒前
郭子仪发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
兴奋海雪完成签到,获得积分10
7秒前
7秒前
8秒前
跳跃完成签到,获得积分10
8秒前
Qoo发布了新的文献求助30
8秒前
8秒前
腾飞完成签到,获得积分10
9秒前
sheep发布了新的文献求助10
10秒前
领导范儿应助萌兴采纳,获得10
10秒前
10秒前
夕荀发布了新的文献求助10
11秒前
小二郎应助萤火采纳,获得10
11秒前
iNk应助Cassiopiea19采纳,获得20
12秒前
Hello应助Cassiopiea19采纳,获得10
12秒前
刘西西完成签到,获得积分10
12秒前
思源应助Hhhhhhhh采纳,获得100
12秒前
安年发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831979
求助须知:如何正确求助?哪些是违规求助? 3374351
关于积分的说明 10484424
捐赠科研通 3094186
什么是DOI,文献DOI怎么找? 1703366
邀请新用户注册赠送积分活动 819406
科研通“疑难数据库(出版商)”最低求助积分说明 771488