亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of adverse drug reactions using drug convolutional neural networks

药物警戒 药物反应 计算机科学 卷积神经网络 化学信息学 药品 机器学习 生物信息学 过程(计算) 人工智能 药物不良反应 人工神经网络 药物发现 数量结构-活动关系 数据挖掘 医学 药理学 生物信息学 化学 基因 操作系统 生物 生物化学
作者
Anjani Sankar Mantripragada,Sai Phani Teja,Rohith Reddy Katasani,Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:19 (01): 2050046-2050046 被引量:17
标识
DOI:10.1142/s0219720020500468
摘要

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的沛山完成签到,获得积分10
1秒前
王瑾言发布了新的文献求助10
4秒前
6秒前
科研通AI5应助尊敬的沛山采纳,获得10
9秒前
Orange应助ceeray23采纳,获得30
24秒前
orixero应助ceeray23采纳,获得20
30秒前
35秒前
38秒前
何仙姑发布了新的文献求助10
42秒前
47秒前
53秒前
whj完成签到 ,获得积分10
56秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
NS完成签到,获得积分10
1分钟前
情怀应助王瑾言采纳,获得10
1分钟前
NS发布了新的文献求助10
1分钟前
1分钟前
1分钟前
NS发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
科研通AI2S应助TiAmo采纳,获得10
1分钟前
水水的发布了新的文献求助20
1分钟前
1分钟前
阳佟冬卉完成签到,获得积分10
1分钟前
2分钟前
pretty完成签到 ,获得积分10
2分钟前
TiAmo发布了新的文献求助10
2分钟前
王瑾言发布了新的文献求助10
2分钟前
小冯完成签到 ,获得积分10
2分钟前
研友_ZbP41L完成签到 ,获得积分10
2分钟前
李浩发布了新的文献求助10
2分钟前
小陈爱科研完成签到,获得积分10
2分钟前
2分钟前
dax大雄完成签到 ,获得积分10
2分钟前
叫我陈老师啊完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042584
求助须知:如何正确求助?哪些是违规求助? 4273052
关于积分的说明 13322016
捐赠科研通 4085897
什么是DOI,文献DOI怎么找? 2235429
邀请新用户注册赠送积分活动 1242948
关于科研通互助平台的介绍 1170015