计算机科学
随机森林
质谱法
人工智能
机器学习
决策树
支持向量机
蛋白质组学
朴素贝叶斯分类器
分类器(UML)
数据挖掘
化学
色谱法
生物化学
基因
作者
Juntao Li,Kanglei Zhou,Bingyu Mu
标识
DOI:10.2174/1570164617999201023145304
摘要
With the rapid development of high-throughput techniques, mass spectrometry has been widely used for large-scale protein analysis. To search for the existing proteins, discover biomarkers, and diagnose and prognose diseases, machine learning methods are applied in mass spectrometry data analysis. This paper reviews the applications of five kinds of machine learning methods to mass spectrometry data analysis from an algorithmic point of view, including support vector machine, decision tree, random forest, naive Bayesian classifier and deep learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI