Artificial Intelligence, Machine Learning, and Cardiovascular Disease

人工智能 机器学习 深度学习 计算机科学 转化式学习 人工智能应用 大数据 疾病 精密医学 数据科学 医学 数据挖掘 心理学 病理 教育学
作者
Pankaj Mathur,Shweta Srivastava,Xiaowei Xu,Jawahar L. Mehta
出处
期刊:Clinical Medicine Insights [SAGE Publishing]
卷期号:14: 117954682092740-117954682092740 被引量:133
标识
DOI:10.1177/1179546820927404
摘要

Artificial intelligence (AI)-based applications have found widespread applications in many fields of science, technology, and medicine. The use of enhanced computing power of machines in clinical medicine and diagnostics has been under exploration since the 1960s. More recently, with the advent of advances in computing, algorithms enabling machine learning, especially deep learning networks that mimic the human brain in function, there has been renewed interest to use them in clinical medicine. In cardiovascular medicine, AI-based systems have found new applications in cardiovascular imaging, cardiovascular risk prediction, and newer drug targets. This article aims to describe different AI applications including machine learning and deep learning and their applications in cardiovascular medicine. AI-based applications have enhanced our understanding of different phenotypes of heart failure and congenital heart disease. These applications have led to newer treatment strategies for different types of cardiovascular diseases, newer approach to cardiovascular drug therapy and postmarketing survey of prescription drugs. However, there are several challenges in the clinical use of AI-based applications and interpretation of the results including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data which can lead to erroneous conclusions. Still, AI is a transformative technology and has immense potential in health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得30
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
1秒前
小溪发布了新的文献求助10
2秒前
petrichor完成签到 ,获得积分10
2秒前
球球尧伞耳完成签到,获得积分10
2秒前
3秒前
7秒前
唯梦发布了新的文献求助10
8秒前
prim发布了新的文献求助10
8秒前
zmnzmnzmn应助灿灿采纳,获得10
12秒前
douning发布了新的文献求助10
12秒前
petrichor完成签到 ,获得积分10
16秒前
燕儿完成签到,获得积分10
18秒前
22秒前
天涯倦客完成签到,获得积分10
22秒前
25秒前
meng完成签到,获得积分10
25秒前
ABC发布了新的文献求助10
25秒前
科研通AI5应助douning采纳,获得10
25秒前
包容东蒽完成签到 ,获得积分10
25秒前
26秒前
英姑应助可可采纳,获得10
26秒前
冰魂应助prim采纳,获得10
27秒前
李健的小迷弟应助唯梦采纳,获得10
27秒前
淡然白安发布了新的文献求助30
30秒前
沉积岩完成签到,获得积分10
30秒前
朽木发布了新的文献求助10
30秒前
文献看不懂应助SEM小菜鸡采纳,获得10
30秒前
su完成签到,获得积分10
32秒前
名丿完成签到,获得积分10
33秒前
33秒前
34秒前
科研小白发布了新的文献求助10
37秒前
38秒前
menxiaomei发布了新的文献求助30
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944