Unraveling the links between rapid automatized naming (RAN), phonological awareness, and reading.

快速自动命名 语音意识 心理学 阅读(过程) 音韵学 音素意识 认知心理学 语言学 发展心理学 读写能力 教育学 计算机科学 计算机网络 哲学
作者
Daisy Powell,Lynette Atkinson
出处
期刊:Journal of Educational Psychology [American Psychological Association]
卷期号:113 (4): 706-718 被引量:46
标识
DOI:10.1037/edu0000625
摘要

It is well established that phonological awareness (PA) and rapid automatized naming (RAN) tasks reliably predict children’s developing word reading abilities, across a wide range of languages. However, existing research has not yet demonstrated unequivocally whether RAN and PA are independently and causally linked to reading, nor fully explored the underlying cognitive mechanisms. Most existing research has assessed PA and RAN in children who may already have some reading skill, making direction of influence hard to ascertain. To address this, the current longitudinal research initially assessed RAN and PA in a very young sample of 91 English children (mean age: 3;11; SD = 3.7 months), demonstrated to be non-readers. Children were reassessed on RAN, PA, and word-level reading, 18 months (Time 2) and then a further year later (Time 3). To explore underlying mechanisms, separate measures of reading accuracy and fluency were taken, and reading tasks varied according to the extent to which they required alphabetic decoding and lexical, orthographic knowledge. Path analyses revealed that from Time 1 to Time 2 both RAN and PA predicted word reading, indicating temporal precedence, though there was some degree of reciprocity in these relationships. However, by Time 3, while RAN still predicted accuracy and fluency of reading, PA only predicted reading accuracy. Furthermore, findings suggested that while RAN was robustly related to both alphabetic decoding and lexical, orthographic aspects of reading, PA’s relationship was restricted to alphabetic decoding accuracy. Theoretical and practical implications are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的飞荷完成签到,获得积分10
刚刚
刚刚
善学以致用应助BIGDEEK采纳,获得10
刚刚
刚刚
ztayx完成签到 ,获得积分10
刚刚
1秒前
wanwan发布了新的文献求助10
1秒前
领导范儿应助粗心的忆山采纳,获得10
1秒前
1秒前
宋灵竹完成签到,获得积分10
2秒前
李咕噜发布了新的文献求助10
2秒前
xinyu发布了新的文献求助10
2秒前
2秒前
传奇3应助淇媛采纳,获得10
2秒前
NexusExplorer应助tree采纳,获得10
3秒前
正文发布了新的文献求助10
3秒前
Orange应助少年游采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
HJJHJH发布了新的文献求助10
6秒前
111发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
cosy完成签到,获得积分10
6秒前
竹马追云发布了新的文献求助10
7秒前
7秒前
感动尔柳发布了新的文献求助10
7秒前
8秒前
彭于晏应助微风正好采纳,获得10
8秒前
英俊的铭应助翟永胜采纳,获得80
8秒前
慕青应助第七个星球采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
善学以致用应助ww采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006