自回归积分移动平均
期限(时间)
计算机科学
自回归模型
时间序列
测距
数据建模
移动平均线
机器学习
计量经济学
数学
数据库
计算机视觉
量子力学
电信
物理
作者
Mu Li,Feifei Zheng,Ruoling Tao,Qingzhou Zhang,Zoran Kapelan
标识
DOI:10.1061/(asce)wr.1943-5452.0001276
摘要
This case study uses a long short-term memory (LSTM)–based model to predict short-term urban water demands for the Hefei City of China. The performance of the LSTM-based model is compared with the autoregressive integrated moving average (ARIMA) model, the support vector regression (SVR) model, and the random forests (RF) model based on data with time resolutions ranging from 15 min to 24 h. Additionally, this paper investigates the performance of the LSTM-based model in predicting multiple successive data points. Results show that the LSTM-based model can offer predictions with improved accuracy than the other models when dealing with data with high time resolutions, data points with abrupt changes, and data with a relatively high uncertainty level. It is also observed that the LSTM-based model exhibits the best performance in predicting multiple successive water demands with high time resolutions. In addition, the inclusion of external parameters (e.g., temperature) cannot enhance the performance of the LSTM-based model, but it can improve ARIMAX's prediction ability (ARIMAX is the ARIMA with variables). These observations provide additional and improved evaluations regarding the LSTM-based models used for short-term urban water demand forecasting, thereby enabling their wider adoption in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI