Sampling design optimization for soil mapping with random forest

随机森林 抽样设计 采样(信号处理) 拉丁超立方体抽样 统计 人口 简单随机抽样 参数统计 均方误差 模拟退火 数字土壤制图 校准 计算机科学 数学 人工智能 土壤图 算法 蒙特卡罗方法 土壤水分 环境科学 土壤科学 人口学 滤波器(信号处理) 社会学 计算机视觉
作者
Alexandre M.J.‐C. Wadoux,D.J. Brus,G.B.M. Heuvelink
出处
期刊:Geoderma [Elsevier BV]
卷期号:355: 113913-113913 被引量:137
标识
DOI:10.1016/j.geoderma.2019.113913
摘要

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖淘淘完成签到,获得积分10
1秒前
秋霜完成签到 ,获得积分10
3秒前
可爱的函函应助fan采纳,获得10
4秒前
执着幻然完成签到 ,获得积分10
5秒前
耍酷千亦完成签到 ,获得积分10
5秒前
游大侠发布了新的文献求助30
6秒前
VitoLi发布了新的文献求助10
6秒前
8秒前
CR7应助可耐的思枫采纳,获得20
10秒前
11秒前
CR7举报易酰水烊酸求助涉嫌违规
12秒前
13秒前
xuexin完成签到 ,获得积分20
13秒前
14秒前
fan发布了新的文献求助10
17秒前
年轻迪奥完成签到,获得积分10
17秒前
18秒前
丘比特应助无辜的书雁采纳,获得10
20秒前
愚人发布了新的文献求助10
23秒前
于舒婷完成签到,获得积分10
24秒前
24秒前
26秒前
zzq完成签到,获得积分20
28秒前
修脚大师完成签到,获得积分10
29秒前
pcr163应助凉薄少年采纳,获得100
29秒前
大胆香彤完成签到,获得积分10
30秒前
可耐的思枫完成签到,获得积分10
30秒前
jklwss完成签到,获得积分10
31秒前
星辰大海应助别当真采纳,获得10
31秒前
33秒前
33秒前
kk应助venihall采纳,获得10
33秒前
认真银耳汤完成签到,获得积分10
33秒前
任性新烟完成签到 ,获得积分10
36秒前
38秒前
英俊的铭应助ccc采纳,获得10
38秒前
coolkid应助修脚大师采纳,获得10
38秒前
拉长的弼发布了新的文献求助10
38秒前
39秒前
顾矜应助蓝桉采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942702
求助须知:如何正确求助?哪些是违规求助? 3487860
关于积分的说明 11045758
捐赠科研通 3218409
什么是DOI,文献DOI怎么找? 1778885
邀请新用户注册赠送积分活动 864448
科研通“疑难数据库(出版商)”最低求助积分说明 799504