恶臭假单胞菌
生物
趋化性
生物化学
酚类
新陈代谢
背景(考古学)
突变体
操纵子
受体
酶
基因
古生物学
作者
Inga Sarand,S Osterberg,Sofie Holmqvist,Per Holmfeldt,Eleonore Skärfstad,Rebecca E. Parales,Victoria Shingler
标识
DOI:10.1111/j.1462-2920.2007.01546.x
摘要
Summary Comparatively little is known about directed motility of environmental bacteria to common aromatic pollutants. Here, by expressing different parts of a (methyl)phenol‐degradative pathway and the use of specific mutants, we show that taxis of Pseudomonas putida towards (methyl)phenols is dictated by its ability to catabolize the aromatic compound. Thus, in contrast to previously described chemoreceptor‐mediated chemotaxis mechanisms towards benzoate, naphthalene and toluene, taxis in response to (methyl)phenols is mediated by metabolism‐dependent behaviour. Here we show that P. putida differentially expresses three Aer‐like receptors that are all polar‐localized through interactions with CheA, and that inactivation of the most abundant Aer2 protein significantly decreases taxis towards phenolics. In addition, the participation of a sensory signal transduction protein composed of a PAS, a GGDEF and an EAL domain in motility towards these compounds is demonstrated. The results are discussed in the context of the versatility of metabolism‐dependent coupling and the necessity for P. putida to integrate diverse metabolic signals from its native heterogeneous soil and water environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI