化学
细菌
革兰氏阴性菌
单线态氧
奇异变形杆菌
粪肠球菌
光动力疗法
抗菌剂
革兰氏阳性菌
微生物学
大肠杆菌
试剂
光敏剂
活性氧
核化学
光化学
生物化学
氧气
生物
有机化学
遗传学
基因
作者
Liyi Huang,Xuan Yi,Yuichiro Koide,Timur Zhiyentayev,Masamitsu Tanaka,Michael R. Hamblin
摘要
Abstract Background and Objectives Antimicrobial photodynamic therapy (APDT) employs a non‐toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ( 1 O 2 , produced via Type II mechanism) and hydroxyl radical (HO . , produced via Type I mechanism). This study examined the relative contributions of 1 O 2 and HO . to APDT killing of Gram‐positive and Gram‐negative bacteria. Study Design/Materials and Methods Fluorescence probes, 3′‐( p ‐hydroxyphenyl)‐fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO . and 1 O 2 produced by illumination of two PS: tris‐cationic‐buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI–ce6). Dimethylthiourea is a HO . scavenger, while sodium azide (NaN 3 ) is a quencher of 1 O 2 . Both APDT and killing by Fenton reaction (chemical generation of HO . ) were carried out on Gram‐positive bacteria ( Staphylococcus aureus and Enterococcus faecalis ) and Gram‐negative bacteria ( Escherichia coli , Proteus mirabilis , and Pseudomonas aeruginosa ). Results Conjugate PEI‐ce6 mainly produced 1 O 2 (quenched by NaN 3 ), while BB6 produced HO . in addition to 1 O 2 when NaN 3 potentiated probe activation. NaN 3 also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram‐positive bacteria needed a higher concentration than Gram‐negatives. NaN 3 potentiated Fenton‐mediated killing of all bacteria. The ratio of APDT killing between Gram‐positive and Gram‐negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI‐ce6. There was a NaN 3 dose‐dependent inhibition of APDT killing using both PEI‐ce6 and BB6 against Gram‐negative bacteria while NaN 3 almost failed to inhibit killing of Gram‐positive bacteria. Conclusion Azidyl radicals may be formed from NaN 3 and HO . . It may be that Gram‐negative bacteria are more susceptible to HO . while Gram‐positive bacteria are more susceptible to 1 O 2 . The differences in NaN 3 inhibition may reflect differences in the extent of PS binding to bacteria (microenvironment) or differences in penetration of NaN 3 into cell walls of bacteria. Lasers Surg. Med. 44: 490–499, 2012. © Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI