变换矩阵
转化(遗传学)
基本矩阵(线性微分方程)
基质(化学分析)
基本矩阵
计算
集合(抽象数据类型)
简单(哲学)
算法
计算机科学
功能(生物学)
扩展(谓词逻辑)
序列(生物学)
校准
数学
八点算法
点(几何)
图像(数学)
计算机视觉
状态转移矩阵
对称矩阵
数学分析
几何学
基因
统计
物理
特征向量
程序设计语言
进化生物学
认识论
量子力学
经典力学
运动学
生物化学
遗传学
生物
复合材料
化学
材料科学
哲学
作者
Paulo R. S. Mendonça,Roberto Cipolla
标识
DOI:10.1109/cvpr.1999.786984
摘要
This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI