An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows

皮卡 水准点(测量) 车辆路径问题 数学优化 计算机科学 布线(电子设计自动化) 启发式 任务(项目管理) 构造(python库) 增量启发式搜索 搜索算法 算法 波束搜索 数学 工程类 人工智能 大地测量学 系统工程 图像(数学) 程序设计语言 地理 计算机网络
作者
Stefan Røpke,David Pisinger
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:40 (4): 455-472 被引量:2199
标识
DOI:10.1287/trsc.1050.0135
摘要

The pickup and delivery problem with time windows is the problem of serving a number of transportation requests using a limited amount of vehicles. Each request involves moving a number of goods from a pickup location to a delivery location. Our task is to construct routes that visit all locations such that corresponding pickups and deliveries are placed on the same route, and such that a pickup is performed before the corresponding delivery. The routes must also satisfy time window and capacity constraints. This paper presents a heuristic for the problem based on an extension of the large neighborhood search heuristic previously suggested for solving the vehicle routing problem with time windows. The proposed heuristic is composed of a number of competing subheuristics that are used with a frequency corresponding to their historic performance. This general framework is denoted adaptive large neighborhood search. The heuristic is tested on more than 350 benchmark instances with up to 500 requests. It is able to improve the best known solutions from the literature for more than 50% of the problems. The computational experiments indicate that it is advantageous to use several competing subheuristics instead of just one. We believe that the proposed heuristic is very robust and is able to adapt to various instance characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
FashionBoy应助LG采纳,获得10
1秒前
科研通AI6.1应助奶桃七七采纳,获得10
2秒前
orixero应助华123采纳,获得10
2秒前
2秒前
Hello应助夹子方糖采纳,获得10
2秒前
2秒前
qiao发布了新的文献求助10
3秒前
Lucas应助下雨这天采纳,获得10
3秒前
星辰大海应助HJJHJH采纳,获得10
4秒前
YUYU完成签到,获得积分10
5秒前
Lucas应助黄启烽采纳,获得30
5秒前
lynn完成签到,获得积分10
5秒前
NEKO完成签到,获得积分10
5秒前
6秒前
翻翻完成签到,获得积分10
7秒前
DTOU发布了新的文献求助10
7秒前
freya发布了新的文献求助10
7秒前
7秒前
Sara发布了新的文献求助10
7秒前
跳跳虎发布了新的文献求助10
8秒前
yi完成签到,获得积分20
9秒前
精明玲发布了新的文献求助10
9秒前
10秒前
nini完成签到,获得积分10
10秒前
李健的小迷弟应助LLF采纳,获得10
11秒前
酷波er应助青山采纳,获得10
11秒前
momo完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
nini发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
16秒前
科研通AI6.1应助陈宁佳采纳,获得10
16秒前
风吹半夏发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769552
求助须知:如何正确求助?哪些是违规求助? 5580237
关于积分的说明 15422059
捐赠科研通 4903244
什么是DOI,文献DOI怎么找? 2638138
邀请新用户注册赠送积分活动 1586036
关于科研通互助平台的介绍 1541128