化学
色谱法
甲酸铵
分析物
质谱法
选择性反应监测
同位素稀释
液相色谱-质谱法
固相萃取
甲酸
高效液相色谱法
不对称二甲基精氨酸
串联质谱法
精氨酸
氨基酸
生物化学
作者
Mariska Davids,Eliane Swieringa,Fredrik Palm,Desirée E.C. Smith,Yvo M. Smulders,P Scheffer,Henk J. Blom,Tom Teerlink
标识
DOI:10.1016/j.jchromb.2012.05.025
摘要
Production of the endogenous vasodilator nitric oxide (NO) from L-arginine by NO synthase is modulated by L-homoarginine, l-monomethylargine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Here we report on a stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of these metabolites in plasma, cells and tissues. After addition of the internal standards (D(7)-ADMA, D(4)-L-homoarginine and (13)C(6)-L-arginine), analytes were extracted from the samples using Waters Oasis MCX solid phase extraction cartridges. Butylated analytes were separated isocratically on a Waters XTerra MS C18 column (3.5 μm, 3.9 mm × 100 mm) using 600 mg/L ammonium formate in water - acetonitrile (95.5:4.5, v/v) containing 0.1 vol% formic acid, and subsequently measured on an AB Sciex API 3000 triple quadrupole mass spectrometer. Multiple reaction monitoring in positive mode was used for analyte quantification. Validation was performed in plasma. Calibration lines were linear (r(2)≥0.9979) and lower limits of quantification in plasma were 0.4 nM for ADMA and SDMA and 0.8 nM for the other analytes. Accuracy (% bias) was <3% except for MMA (<7%), intra-assay precision (expressed as CV) was <3.5%, inter-assay precision <9.6%, and recovery 92.9-103.2% for all analytes. The method showed good correlation (r(2)≥0.9125) with our previously validated HPLC-fluorescence method for measurement in plasma, and was implemented with good performance for measurement of tissue samples. Application of the method revealed the remarkably fast (i.e. within 60 min) appearance in plasma of stable isotope-labeled ADMA, SDMA, and MMA during infusion of D(3)-methyl-1-(13)C-methionine in healthy volunteers.
科研通智能强力驱动
Strongly Powered by AbleSci AI