Improvement of Force-Sensor-Based Heart Rate Estimation Using Multichannel Data Fusion

计算机科学 频道(广播) 心跳 传感器融合 估计员 模式识别(心理学) 语音识别 算法 人工智能 统计 数学 电信 计算机安全
作者
Christoph Brüser,Juha M. Kortelainen,Stefan Winter,M. Tenhunen,Juha Pärkkä,Steffen Leonhardt
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 227-235 被引量:61
标识
DOI:10.1109/jbhi.2014.2311582
摘要

The aim of this paper is to present and evaluate algorithms for heartbeat interval estimation from multiple spatially distributed force sensors integrated into a bed. Moreover, the benefit of using multichannel systems as opposed to a single sensor is investigated. While it might seem intuitive that multiple channels are superior to a single channel, the main challenge lies in finding suitable methods to actually leverage this potential. To this end, two algorithms for heart rate estimation from multichannel vibration signals are presented and compared against a single-channel sensing solution. The first method operates by analyzing the cepstrum computed from the average spectra of the individual channels, while the second method applies Bayesian fusion to three interval estimators, such as the autocorrelation, which are applied to each channel. This evaluation is based on 28 night-long sleep lab recordings during which an eight-channel polyvinylidene fluoride-based sensor array was used to acquire cardiac vibration signals. The recruited patients suffered from different sleep disorders of varying severity. From the sensor array data, a virtual single-channel signal was also derived for comparison by averaging the channels. The single-channel results achieved a beat-to-beat interval error of 2.2% with a coverage (i.e., percentage of the recording which could be analyzed) of 68.7%. In comparison, the best multichannel results attained a mean error and coverage of 1.0% and 81.0%, respectively. These results present statistically significant improvements of both metrics over the single-channel results (p < 0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oyxz完成签到,获得积分10
刚刚
世界随心走完成签到,获得积分20
刚刚
刚刚
1秒前
在水一方应助兴奋天蓉采纳,获得10
2秒前
零度发布了新的文献求助10
3秒前
Luo完成签到,获得积分10
4秒前
4秒前
彩色黑米发布了新的文献求助10
4秒前
肥仔发布了新的文献求助10
4秒前
Aeroblues完成签到,获得积分20
5秒前
6秒前
7秒前
尔玉完成签到 ,获得积分10
8秒前
李振华发布了新的文献求助10
9秒前
无花果应助xjx采纳,获得10
9秒前
9秒前
10秒前
music发布了新的文献求助10
11秒前
许瑞杰完成签到,获得积分10
11秒前
英俊的沛容发布了新的文献求助200
11秒前
忆楠完成签到,获得积分10
12秒前
小宋完成签到,获得积分10
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
学术秘籍完成签到,获得积分20
13秒前
兴奋天蓉发布了新的文献求助10
14秒前
忆楠发布了新的文献求助10
14秒前
肥仔完成签到,获得积分10
14秒前
汉堡包应助淡墨采纳,获得10
15秒前
15秒前
16秒前
16秒前
自转无风完成签到,获得积分10
17秒前
小宋发布了新的文献求助10
18秒前
111发布了新的文献求助10
19秒前
19秒前
22秒前
yq发布了新的文献求助10
22秒前
25秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784205
求助须知:如何正确求助?哪些是违规求助? 3329352
关于积分的说明 10241607
捐赠科研通 3044806
什么是DOI,文献DOI怎么找? 1671325
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759288