Bush encroachment monitoring using multi-temporal Landsat data and random forests

灌木丛 土地退化 荒漠化 植被(病理学) 林地 环境科学 遥感 草原 土地利用 随机森林 卫星图像 生态系统 地理 自然地理学 环境资源管理 生态学 计算机科学 病理 机器学习 生物 医学
作者
Elías Symeonakis,Thomas Higginbottom
出处
期刊:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 卷期号:XL-2: 29-35 被引量:22
标识
DOI:10.5194/isprsarchives-xl-2-29-2014
摘要

Abstract. It is widely accepted that land degradation and desertification (LDD) are serious global threats to humans and the environment. Around a third of savannahs in Africa are affected by LDD processes that may lead to substantial declines in ecosystem functioning and services. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as a potential indicator of LDD. Mapping bush encroachment over large areas can only effectively be done using Earth Observation (EO) data and techniques. However, the accurate assessment of large-scale savannah degradation through bush encroachment with satellite imagery remains a formidable task due to the fact that on the satellite data vegetation variability in response to highly variable rainfall patterns might obscure the underlying degradation processes. Here, we present a methodological framework for the monitoring of bush encroachment-related land degradation in a savannah environment in the Northwest Province of South Africa. We utilise multi-temporal Landsat TM and ETM+ (SLC-on) data from 1989 until 2009, mostly from the dry-season, and ancillary data in a GIS environment. We then use the machine learning classification approach of random forests to identify the extent of encroachment over the 20-year period. The results show that in the area of study, bush encroachment is as alarming as permanent vegetation loss. The classification of the year 2009 is validated yielding low commission and omission errors and high k-statistic values for the grasses and woody vegetation classes. Our approach is a step towards a rigorous and effective savannah degradation assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助宅多点采纳,获得10
刚刚
zhangrongqi发布了新的文献求助10
1秒前
生动阁发布了新的文献求助100
2秒前
2秒前
星星2发布了新的文献求助30
2秒前
4秒前
4秒前
bqf完成签到,获得积分10
5秒前
李zhu发布了新的文献求助10
6秒前
091发布了新的文献求助10
6秒前
怂宝儿发布了新的文献求助10
7秒前
8秒前
TTYYI发布了新的文献求助10
9秒前
科研通AI6应助myf采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
宅多点完成签到,获得积分20
11秒前
bqf发布了新的文献求助10
11秒前
12秒前
蒋鹏煊完成签到,获得积分10
12秒前
平淡的井完成签到,获得积分10
13秒前
搬砖完成签到,获得积分10
13秒前
Joeswith发布了新的文献求助10
13秒前
14秒前
ccmow完成签到 ,获得积分10
14秒前
李zhu完成签到,获得积分20
14秒前
宅多点发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI6应助123采纳,获得10
16秒前
17秒前
kiki发布了新的文献求助10
17秒前
生动阁发布了新的文献求助10
18秒前
18秒前
用户云清发布了新的文献求助10
18秒前
hugh完成签到 ,获得积分10
18秒前
19秒前
氯吡格雷完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540818
求助须知:如何正确求助?哪些是违规求助? 4627343
关于积分的说明 14603974
捐赠科研通 4568485
什么是DOI,文献DOI怎么找? 2504563
邀请新用户注册赠送积分活动 1482157
关于科研通互助平台的介绍 1453707