A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories

医学 癌症 胰腺癌 疾病 深度学习 机器学习 人工智能 内科学 计算机科学
作者
Davide Placido,Bo Yuan,Jessica Xin Hjaltelin,Chunlei Zheng,Amalie Dahl Haue,Piotr Jaroslaw Chmura,Chen Yuan,Jihye Kim,Renato Umeton,Gregory C. Antell,Alexander Chowdhury,Alexandra Franz,Lauren K. Brais,Elizabeth Andrews,Debora S. Marks,Aviv Regev,Siamack Ayandeh,Mary T. Brophy,Nhan Do,Peter Kraft,Brian M. Wolpin,Michael H. Rosenthal,Nathanael R. Fillmore,Søren Brunak,Chris Sander
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (5): 1113-1122 被引量:127
标识
DOI:10.1038/s41591-023-02332-5
摘要

Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝天白云发布了新的文献求助10
1秒前
zxf完成签到 ,获得积分10
3秒前
6秒前
斯寜应助TTTTTT采纳,获得10
6秒前
7秒前
Meidina发布了新的文献求助10
7秒前
ll完成签到 ,获得积分10
8秒前
豆子发布了新的文献求助10
10秒前
蓝天白云完成签到,获得积分20
10秒前
瑶啊瑶发布了新的文献求助10
12秒前
隐形曼青应助Cee采纳,获得10
13秒前
wzzznh完成签到 ,获得积分10
14秒前
心悦完成签到 ,获得积分10
14秒前
FashionBoy应助陈泽宇采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
寒江雪应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
liu完成签到 ,获得积分10
20秒前
所所应助Meidina采纳,获得10
20秒前
斯文败类应助miaowk采纳,获得10
23秒前
24秒前
24秒前
24秒前
24秒前
zhangheng完成签到,获得积分20
25秒前
zhq发布了新的文献求助10
29秒前
花生酱发布了新的文献求助20
29秒前
stevben完成签到,获得积分10
31秒前
陈泽宇发布了新的文献求助10
31秒前
32秒前
小么完成签到 ,获得积分10
33秒前
阿赫完成签到 ,获得积分10
34秒前
houfei发布了新的文献求助10
34秒前
苗条的水儿完成签到,获得积分10
35秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985