亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of Face Recognition Accuracy of ArcFace, Facenet and Facenet512 Models on Deepface Framework

计算机科学 生物识别 面部识别系统 可靠性(半导体) 面子(社会学概念) 人工智能 认证(法律) 过程(计算) 模式识别(心理学) 机器学习 数据挖掘 计算机安全 社会科学 功率(物理) 物理 量子力学 社会学 操作系统
作者
Andrian Firmansyah,Tien Fabrianti Kusumasari,Ekky Novriza Alam
标识
DOI:10.1109/iccosite57641.2023.10127799
摘要

Face recognition is one of the biometric-based authentication methods known for its reliability. In addition, face recognition is also currently very concerning, especially with the growing use and available technology. Many frameworks can be used for the face recognition process, one of which is DeepFace. DeepFace has many models and detectors that can be used for face recognition with an accuracy above 93%. However, the accuracy obtained needs to be tested, especially when faced with a dataset of Indonesian faces. This research will discuss the accuracy comparison of the Facenet model, Facenet512, from ArcFace, available in the DeepFace framework. From the comparison results, it is obtained that Facenet512 has a high value in accuracy calculation which is 0.974 or 97.4%, compared to Facenet, which has an accuracy of 0.921 or 92.1%, and ArcFace, which has an accuracy of 0.878 or 87.8%. The benefit of this research is to test how high the accuracy of the existing model in DeepFace is if tested with the Indonesian dataset. In this test, Facenet512 is the model that has the highest accuracy when compared to ArcFace and Facenet. This research is expected to help DeepFace users determine the best model to use and provide references to DeepFace developers for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助56采纳,获得10
2秒前
3113129605完成签到 ,获得积分10
5秒前
AQI完成签到,获得积分10
7秒前
科研通AI5应助愤怒的无敌采纳,获得10
8秒前
9秒前
11秒前
桃花落完成签到,获得积分10
11秒前
清爽冰露完成签到,获得积分10
12秒前
嘻嘻嘻发布了新的文献求助10
15秒前
桃花落发布了新的文献求助10
15秒前
坚强的纸飞机完成签到,获得积分10
16秒前
21秒前
24秒前
可爱的函函应助桃花落采纳,获得10
24秒前
26秒前
ddrose发布了新的文献求助10
28秒前
橙子完成签到,获得积分10
42秒前
jinmuna完成签到,获得积分10
42秒前
蓝苏完成签到,获得积分10
51秒前
小伏完成签到 ,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
赘婿应助科研通管家采纳,获得10
55秒前
温暖眼神完成签到,获得积分10
57秒前
58秒前
老实醉冬完成签到,获得积分10
58秒前
愤怒的无敌完成签到,获得积分10
59秒前
59秒前
整齐千柳完成签到,获得积分10
1分钟前
Dash发布了新的文献求助10
1分钟前
1分钟前
Captain发布了新的文献求助10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
m(_._)m完成签到 ,获得积分0
1分钟前
机灵柚子应助ddrose采纳,获得10
1分钟前
CAOHOU应助嘻嘻嘻采纳,获得10
1分钟前
上官若男应助嘻嘻嘻采纳,获得10
1分钟前
1分钟前
情怀应助Dash采纳,获得10
1分钟前
晚意完成签到 ,获得积分10
1分钟前
MechaniKer发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702