Trustworthy Federated Learning via Blockchain

计算机科学 服务器 Byzantine容错 强化学习 计算机网络 边缘设备 分布式计算 边缘计算 计算机安全 人工智能 GSM演进的增强数据速率 容错 云计算 操作系统
作者
Zhanpeng Yang,Yuanming Shi,Yong Zhou,Zixin Wang,Kai Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 92-109 被引量:59
标识
DOI:10.1109/jiot.2022.3201117
摘要

The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this article, we shall propose a decentralized blockchain-based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying a practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning (DRL)-based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by the DRL-based algorithm compared with the baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujiao发布了新的文献求助10
1秒前
1秒前
风清扬发布了新的文献求助10
1秒前
1秒前
1秒前
李爱国应助曲夜白采纳,获得10
2秒前
大昭发布了新的文献求助10
3秒前
yu完成签到,获得积分20
3秒前
3秒前
4秒前
4149发布了新的文献求助10
4秒前
4秒前
5秒前
快乐完成签到,获得积分10
5秒前
还得学啊发布了新的文献求助10
5秒前
蓝景轩辕发布了新的文献求助10
5秒前
如意安青完成签到,获得积分10
5秒前
林花溪发布了新的文献求助10
6秒前
毛毛完成签到 ,获得积分10
6秒前
7秒前
7秒前
Longy发布了新的文献求助10
9秒前
9秒前
虚拟初之完成签到,获得积分10
9秒前
9秒前
xttju2014应助红泥小火炉采纳,获得10
9秒前
9秒前
小二郎应助wujiao采纳,获得10
9秒前
9秒前
9秒前
10秒前
wddddd发布了新的文献求助10
10秒前
12秒前
12秒前
xttju2014发布了新的文献求助10
12秒前
奥拉同学完成签到,获得积分10
12秒前
科目三应助刘佳恬采纳,获得10
12秒前
12秒前
13秒前
波波发布了新的文献求助10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095415
求助须知:如何正确求助?哪些是违规求助? 3633556
关于积分的说明 11517532
捐赠科研通 3344280
什么是DOI,文献DOI怎么找? 1838000
邀请新用户注册赠送积分活动 905541
科研通“疑难数据库(出版商)”最低求助积分说明 823220