Pose-Appearance Relational Modeling for Video Action Recognition

计算机科学 人工智能 稳健性(进化) 姿势 计算机视觉 模式识别(心理学) 光流 动作识别 背景(考古学) 关节式人体姿态估计 图像(数学) 三维姿态估计 古生物学 生物化学 化学 生物 基因 班级(哲学)
作者
Mengmeng Cui,Wei Wang,Kunbo Zhang,Zhenan Sun,Liang Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 295-308 被引量:5
标识
DOI:10.1109/tip.2022.3228156
摘要

Recent studies of video action recognition can be classified into two categories: the appearance-based methods and the pose-based methods. The appearance-based methods generally cannot model temporal dynamics of large motion well by virtue of optical flow estimation, while the pose-based methods ignore the visual context information such as typical scenes and objects, which are also important cues for action understanding. In this paper, we tackle these problems by proposing a Pose-Appearance Relational Network (PARNet), which models the correlation between human pose and image appearance, and combines the benefits of these two modalities to improve the robustness towards unconstrained real-world videos. There are three network streams in our model, namely pose stream, appearance stream and relation stream. For the pose stream, a Temporal Multi-Pose RNN module is constructed to obtain the dynamic representations through temporal modeling of 2D poses. For the appearance stream, a Spatial Appearance CNN module is employed to extract the global appearance representation of the video sequence. For the relation stream, a Pose-Aware RNN module is built to connect pose and appearance streams by modeling action-sensitive visual context information. Through jointly optimizing the three modules, PARNet achieves superior performances compared with the state-of-the-arts on both the pose-complete datasets (KTH, Penn-Action, UCF11) and the challenging pose-incomplete datasets (UCF101, HMDB51, JHMDB), demonstrating its robustness towards complex environments and noisy skeletons. Its effectiveness on NTU-RGBD dataset is also validated even compared with 3D skeleton-based methods. Furthermore, an appearance-enhanced PARNet equipped with a RGB-based I3D stream is proposed, which outperforms the Kinetics pre-trained competitors on UCF101 and HMDB51. The better experimental results verify the potentials of our framework by integrating various modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助tong采纳,获得10
刚刚
kimikoi完成签到,获得积分10
1秒前
2秒前
2秒前
背后老太完成签到,获得积分20
2秒前
菜菜完成签到 ,获得积分10
3秒前
3秒前
3秒前
Bgeelyu发布了新的文献求助10
3秒前
桐桐应助犹豫绾绾采纳,获得10
4秒前
机灵道罡发布了新的文献求助10
4秒前
科研通AI2S应助survivaluu采纳,获得10
4秒前
小齐爱科研完成签到,获得积分10
5秒前
怡然芷蝶发布了新的文献求助10
5秒前
快来拾糖完成签到 ,获得积分10
5秒前
科研通AI5应助老疯智采纳,获得30
6秒前
6秒前
=.=发布了新的文献求助10
7秒前
lzq发布了新的文献求助10
7秒前
chen0815完成签到,获得积分20
7秒前
如意草丛发布了新的文献求助10
7秒前
8秒前
李爱国应助happy采纳,获得10
8秒前
科研通AI5应助酥酥鸡腿堡采纳,获得10
8秒前
8秒前
9秒前
迷路小丸子完成签到,获得积分10
9秒前
10秒前
10秒前
英姑应助chen0815采纳,获得10
10秒前
11秒前
11秒前
11秒前
万安安完成签到,获得积分10
12秒前
12秒前
乐乐完成签到,获得积分10
12秒前
13秒前
=.=完成签到,获得积分10
13秒前
盐湖所王裕民完成签到,获得积分10
13秒前
tong发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621