Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration

均方误差 人工智能 深度学习 计算机科学 稳健性(进化) 机器学习 模式识别(心理学) 数学 统计 生物化学 基因 化学
作者
Md Maruf Hossain Shuvo,Syed K. Islam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1612-1623 被引量:21
标识
DOI:10.1109/jbhi.2022.3233486
摘要

The adverse glycemic events triggered by the inaccurate insulin infusion in Type I diabetes (T1D) can lead to fatal complications. Predicting blood glucose concentration (BGC) based on clinical health records is critical for control algorithms in the artificial pancreas (AP) and aiding in medical decision support. This paper presents a novel deep learning (DL) model incorporating multitask learning (MTL) for personalized blood glucose prediction. The network architecture consists of shared and clustered hidden layers. Two layers of stacked long short-term memory (LSTM) form the shared hidden layers that learn generalized features from all subjects. The clustered hidden layers comprise two dense layers adapting to the gender-specific variability in the data. Finally, the subject-specific dense layers offer additional fine-tuning to personalized glucose dynamics resulting in an accurate BGC prediction at the output. OhioT1DM clinical dataset is used for the training and performance evaluation of the proposed model. A detailed analytical and clinical assessment have been performed using root mean square (RMSE), mean absolute error (MAE), and Clarke error grid analysis (EGA), respectively, which demonstrates the robustness and reliability of the proposed method. Consistently leading performance has been achieved for 30- (RMSE = 16.06 ±2.74, MAE = 10.64 ±1.35), 60- (RMSE = 30.89 ±4.31, MAE = 22.07 ±2.96), 90- (RMSE = 40.51 ±5.16, MAE = 30.16 ±4.10), and 120-minute (RMSE = 47.39 ±5.62, MAE = 36.36 ±4.54) prediction horizon (PH). In addition, the EGA analysis confirms the clinical feasibility by maintaining more than 94 % BGC predictions in the clinically safe zone for up to 120-minute PH. Moreover, the improvement is established by benchmarking against the state-of-the-art statistical, machine learning (ML), and deep learning (DL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助albert Tesla采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
笑解烦恼结完成签到,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
lingquanmeng完成签到 ,获得积分10
1秒前
天真的宝马完成签到 ,获得积分10
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
SciGPT应助小羊采纳,获得20
1秒前
有你好梦应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
许甜甜鸭应助科研通管家采纳,获得10
2秒前
cloud完成签到,获得积分10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
残幻应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
搜集达人应助Lee采纳,获得10
3秒前
4秒前
阿胡完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
海棠之秋发布了新的文献求助10
5秒前
1LDan完成签到,获得积分10
6秒前
萌酱发布了新的文献求助10
6秒前
6秒前
阳佟若剑发布了新的文献求助10
6秒前
阳光明媚完成签到,获得积分10
6秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797