Spatial Non-Stationary Near-Field Channel Modeling and Validation for Massive MIMO Systems

多输入多输出 频道(广播) 计算机科学 领域(数学) 预编码 遥感 电信 地质学 数学 纯数学
作者
Zhiqiang Yuan,Jianhua Zhang,Yilin Ji,Gert Frølund Pedersen,Wei Fan
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 921-933 被引量:91
标识
DOI:10.1109/tap.2022.3218759
摘要

Massive MIMO is envisioned as a promising technology in 5G and beyond 5G communication. Channel models are of great importance for the development and performance assessment of massive MIMO systems. Since massive MIMO systems are equipped with large-Aperture antenna arrays, antenna elements at different spatial positions would observe different channel multipath characteristics, which is so-called spatial nonstationarity (SnS). The SnS property of multipaths has been observed in many reported massive MIMO channel measurements. However, characterization and explanations of SnS have not been adequate in existing statistical channel modeling, and deterministic models (e.g., ray tracing) are difficult to implement due to the high complexity. This article proposes a realistic yet low-complexity SnS channel modeling framework for massive MIMO systems and its validation based on both channel measurements and ray-Tracing simulations. In this work, we first perform a 6 GHz-bandwidth millimeter-wave (mmWave) indoor channel measurement campaign with a 0.5 m radius virtual uniform circular array (UCA), where the SnS phenomena are clearly observed. Then, we propose the massive MIMO channel modeling framework that captures the observed SnS property from the physical propagation mechanisms of dominant multipaths in mmWave channels, i.e., blockage, reflection, and diffraction. Compared to traditional stationary channel modeling, only one extra parameter accounting for SnS has been added in the proposed framework, which is desirable for its low-complexity implementation. Finally, the proposed framework is validated with site-specific ray-Tracing simulations. The SnS phenomena observed in the measurements are reproduced well in the modeling results according to the proposed framework, and high similarities between the target channels and modeling results are achieved. The proposed framework is valuable for the development of massive MIMO systems since it is realistic, low complexity, and accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡平发布了新的文献求助10
1秒前
1秒前
2秒前
星辰大海应助cwl采纳,获得10
2秒前
3秒前
EvenCai发布了新的文献求助10
3秒前
勤劳寒烟完成签到,获得积分10
3秒前
Yyyyyyyy完成签到 ,获得积分10
4秒前
武鑫跃发布了新的文献求助30
4秒前
nibaba完成签到,获得积分10
5秒前
隐形曼青应助任性宇豪采纳,获得10
5秒前
上官若男应助sxw采纳,获得10
5秒前
无疾而终完成签到,获得积分10
5秒前
田様应助thinking采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
灵感大王喵完成签到 ,获得积分10
6秒前
小蘑菇应助杨蒙博采纳,获得10
6秒前
乐观夜春发布了新的文献求助10
6秒前
6秒前
Viikey发布了新的文献求助10
6秒前
狂野萤完成签到,获得积分10
7秒前
聿潇发布了新的文献求助20
9秒前
jelly10应助倪好采纳,获得30
9秒前
比耶发布了新的文献求助10
9秒前
10秒前
11秒前
long完成签到,获得积分10
11秒前
11秒前
单薄的蓝天完成签到,获得积分10
13秒前
tzy完成签到,获得积分10
14秒前
14秒前
sxw发布了新的文献求助10
15秒前
怪力kitty完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
19秒前
任性宇豪发布了新的文献求助10
20秒前
情怀应助布布采纳,获得30
22秒前
小蘑菇应助kk采纳,获得10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451784
求助须知:如何正确求助?哪些是违规求助? 4559632
关于积分的说明 14274052
捐赠科研通 4483642
什么是DOI,文献DOI怎么找? 2455593
邀请新用户注册赠送积分活动 1446479
关于科研通互助平台的介绍 1422340