无人机
旅行商问题
强化学习
布线(电子设计自动化)
车辆路径问题
计算机科学
节点(物理)
2-选项
人工智能
数学优化
工程类
数学
生物
计算机网络
算法
结构工程
遗传学
作者
Aigerim Bogyrbayeva,Taehyun Yoon,Hanbum Ko,Sungbin Lim,Hyokun Yun,Changhyun Kwon
标识
DOI:10.1016/j.trc.2022.103981
摘要
Reinforcement learning has recently shown promise in learning quality solutions in many combinatorial optimization problems. In particular, the attention-based encoder-decoder models show high effectiveness on various routing problems, including the Traveling Salesman Problem (TSP). Unfortunately, they perform poorly for the TSP with Drone (TSP-D), requiring routing a heterogeneous fleet of vehicles in coordination—a truck and a drone. In TSP-D, the two vehicles are moving in tandem and may need to wait at a node for the other vehicle to join. State-less attention-based decoder fails to make such coordination between vehicles. We propose a hybrid model that uses an attention encoder and a Long Short-Term Memory (LSTM) network decoder, in which the decoder’s hidden state can represent the sequence of actions made. We empirically demonstrate that such a hybrid model improves upon a purely attention-based model for both solution quality and computational efficiency. Our experiments on the min-max Capacitated Vehicle Routing Problem (mmCVRP) also confirm that the hybrid model is more suitable for the coordinated routing of multiple vehicles than the attention-based model. The proposed model demonstrates comparable results as the operations research baseline methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI