Towards an explainable irrigation scheduling approach by predicting soil moisture and evapotranspiration via multi-target regression

蒸散量 灌溉 灌溉调度 含水量 计算机科学 环境科学 农业 农业工程 回归 水文学(农业) 土壤水分 土壤科学 统计 数学 农学 地理 地质学 生态学 岩土工程 考古 工程类 生物
作者
Emna Ben Abdallah,Rima Grati,Khouloud Boukadi
出处
期刊:Journal of Ambient Intelligence and Smart Environments [IOS Press]
卷期号:15 (1): 89-110 被引量:6
标识
DOI:10.3233/ais-220477
摘要

Significant population growth and ongoing socioeconomic development have increased reliance on irrigated agriculture and agricultural intensification. However, accurately predicting crop water demand is problematic since it is affected by several factors such as weather, soil, and water properties. Many studies have shown that a hybrid irrigation system based on two irrigation strategies (i.e., evapotranspiration and soil-based irrigation) can provide a credible and reliable irrigation system. The latter can also alert farmers and other experts to phenomena such as noise, erroneous sensor signals, numerous correlated input and target variables, and incomplete or missing data, especially when the two irrigation strategies produce inconsistent results. Hence, we propose Multi-Target soil moisture and evapotranspiration prediction (MTR-SMET) for estimating soil moisture and evapotranspiration. These predictions are then used to compute water needs based on Food and Agriculture Organization (FAO) and soil-based methods. Besides, we propose an explainable MTR-SMET (xMTR-SMET) that explains the ML-based irrigation to the farmers/users using several explainable AI to provide simple visual explanations for the given predictions. It is the first attempt that explains and offers meaningful insights into the output of a machine learning-based irrigation approach. The conducted experiments showed that the proposed MTR-SMET model achieves low error rates (i.e., MSE = 0.00015, RMSE = 0.0039, MAE = 0.002) and high R 2 score (i.e., 0.9676).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助hushan53采纳,获得10
刚刚
刚刚
刚刚
桐桐应助东郭迎梦采纳,获得10
刚刚
Jasper应助激动的一手采纳,获得10
刚刚
1秒前
guozizi举报菠菜求助涉嫌违规
1秒前
研友_LjDyNZ发布了新的文献求助20
1秒前
vvA11应助周小胜采纳,获得10
2秒前
可乐加冰完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
4秒前
5秒前
可爱的函函应助ff采纳,获得10
5秒前
zhengy1108完成签到,获得积分10
6秒前
6秒前
6秒前
马洗澡完成签到,获得积分10
6秒前
叶瑟曦发布了新的文献求助10
7秒前
红号发布了新的文献求助20
7秒前
安琪完成签到,获得积分10
7秒前
8秒前
8秒前
清风徐来完成签到,获得积分10
10秒前
Lucas应助李里哩采纳,获得10
12秒前
12秒前
在水一方应助激动的一手采纳,获得10
13秒前
HC完成签到 ,获得积分10
13秒前
guigui发布了新的文献求助10
14秒前
kaminari发布了新的文献求助10
14秒前
祖乐松发布了新的文献求助10
15秒前
16秒前
zhengy1108发布了新的文献求助10
16秒前
16秒前
17秒前
luoyulin完成签到,获得积分10
17秒前
17秒前
活泼宛海发布了新的文献求助10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4187207
求助须知:如何正确求助?哪些是违规求助? 3723135
关于积分的说明 11731324
捐赠科研通 3400850
什么是DOI,文献DOI怎么找? 1866150
邀请新用户注册赠送积分活动 922962
科研通“疑难数据库(出版商)”最低求助积分说明 834354