Universal and Accurate Sketch for Estimating Heavy Hitters and Moments in Data Streams

计算机科学 网络数据包 字节 瓶颈 架空(工程) 并行计算 计算机网络 嵌入式系统 操作系统
作者
Qingjun Xiao,Xuyuan Cai,Yifei Qin,Zhiying Tang,Shigang Chen,Yu Liu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1919-1934 被引量:8
标识
DOI:10.1109/tnet.2022.3216025
摘要

In computer networks, traffic measurement is a module in a network probe to measure flow-level statistics from an IP packet stream, which are the basis for network performance monitoring and malicious activity detection. This module extracts the flow IDs from incoming IP packets, classifies packets into flows, and counts the number of packets (or bytes) for each flow. It is a great challenge to measure the per-flow statistics for a high-speed network device, using only the size-limited SRAM on its line cards. Therefore, many algorithms using sublinear memory have been proposed, such as CountMin and CountSketch. However, most of previous algorithms are designed for specific measurement tasks. To obtain multiple types of statistics, people have to deploy multiple sketches, which demands more resources of a network device. It is useful to design a universal sketch that can track not only the top- $k$ largest individual flows (called heavy hitters) but also the overall traffic distribution statistics (called moments). Prior work named UnivMon successfully tackled this ambitious quest. However, it incurs large and variable per-packet processing overhead, which may result in a significant throughput bottleneck in high-rate packet stream, given that each packet requires 33 hashes and 32 memory accesses on average and many times of that in the worst case. To address this performance issue, we fundamentally redesign the solution architecture from hierarchical sampling to new progressive sampling and from CountSketch to new GenericCM, which ensure that per-packet overhead is a small constant (5 hashes and 8 memory accesses in the worst case), making it more suitable for online operations, especially for hardware pipeline implementation. This new design also makes effort to reduce memory footprint or equivalently improve measurement accuracy under the same memory. Our experiments show that our solution reduces measurement error by roughly 98.1% for second-order moment and by 91.5% for entropy, when given the same 0.2MB memory as UnivMon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三水发布了新的文献求助10
刚刚
chentong完成签到,获得积分10
1秒前
1秒前
xxxxxb完成签到,获得积分10
1秒前
2秒前
逍遥完成签到,获得积分10
2秒前
留意完成签到,获得积分10
3秒前
我是一片云完成签到,获得积分20
3秒前
jiyia完成签到,获得积分10
3秒前
ying发布了新的文献求助10
3秒前
3秒前
共享精神应助彪壮的雪晴采纳,获得10
3秒前
3秒前
蛋挞发布了新的文献求助10
3秒前
lll发布了新的文献求助10
4秒前
4秒前
4秒前
寄意繁星发布了新的文献求助10
4秒前
4秒前
Qiqi完成签到 ,获得积分10
4秒前
cici完成签到 ,获得积分10
4秒前
科研通AI6应助庆阳采纳,获得10
5秒前
zzz完成签到,获得积分10
5秒前
不想长大发布了新的文献求助10
5秒前
5秒前
mila完成签到,获得积分10
5秒前
英姑应助刘寅杰采纳,获得10
6秒前
wah发布了新的文献求助10
6秒前
666发布了新的文献求助10
6秒前
清欢渡完成签到,获得积分10
6秒前
在水一方应助yolo采纳,获得10
6秒前
Danna完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
小红完成签到,获得积分10
7秒前
Tiejian完成签到,获得积分10
8秒前
cyan发布了新的文献求助30
8秒前
田一完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269843
求助须知:如何正确求助?哪些是违规求助? 4428234
关于积分的说明 13783267
捐赠科研通 4305846
什么是DOI,文献DOI怎么找? 2362937
邀请新用户注册赠送积分活动 1358574
关于科研通互助平台的介绍 1321352