亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigations into the use of machine learning to predict drug dosage form design to obtain desired release profiles for 3D printed oral medicines

剂型 3d打印 人工神经网络 计算机科学 聚乙烯醇 熔融沉积模型 均方误差 生物医学工程 几何学 人工智能 材料科学 数学 3D打印 化学 色谱法 工程类 统计 复合材料
作者
Hellen Mazur,Leon Erbrich,Julian Quodbach
出处
期刊:Pharmaceutical Development and Technology [Taylor & Francis]
卷期号:28 (2): 219-231 被引量:17
标识
DOI:10.1080/10837450.2023.2173778
摘要

Three-dimensional (3D) printing, digitalization, and artificial intelligence (AI) are gaining increasing interest in modern medicine. All three aspects are combined in personalized medicine where 3D-printed dosage forms are advantageous because of their variable geometry design. The geometry design can be used to determine the surface area to volume (SA/V) ratio, which affects drug release from the dosage forms. This study investigated artificial neural networks (ANN) to predict suitable geometries for the desired dose and release profile. Filaments with 5% API load and polyvinyl alcohol were 3D printed using Fused Deposition Modeling to provide a wide variety of geometries with different dosages and SA/V ratios. These were dissolved in vitro, and the API release profiles were described mathematically. Using these data, ANN architectures were designed with the goal of predicting a suitable dosage form geometry. Poor accuracies of 68.5% in the training and 44.4% in the test settings were achieved with a classification architecture. However, the SA/V ratio could be predicted accurately with a mean squared error loss of only 0.05. This study shows that the prediction of the SA/V ratio using AI works, but not of the exact geometry. For this purpose, a global database could be built with a range of geometries to simplify the prescription process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
21秒前
wyx完成签到,获得积分10
23秒前
31秒前
44秒前
星辰大海应助11111采纳,获得10
51秒前
1分钟前
1分钟前
11111发布了新的文献求助10
1分钟前
1分钟前
通科研完成签到 ,获得积分0
1分钟前
桐桐应助11111采纳,获得10
1分钟前
巫马百招完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
Chloe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助CRUSADER采纳,获得20
2分钟前
隐形曼青应助土了吧唧的采纳,获得10
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
2分钟前
CRUSADER完成签到,获得积分10
2分钟前
东篱发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助东篱采纳,获得10
2分钟前
花城诚成完成签到,获得积分10
3分钟前
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
土了吧唧的完成签到,获得积分20
4分钟前
从容芮完成签到,获得积分0
4分钟前
迷路的天亦完成签到 ,获得积分10
4分钟前
4分钟前
怡然觅山发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Lucas应助吴Sehun采纳,获得10
5分钟前
5分钟前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392317
求助须知:如何正确求助?哪些是违规求助? 3882574
关于积分的说明 12090161
捐赠科研通 3526611
什么是DOI,文献DOI怎么找? 1935240
邀请新用户注册赠送积分活动 976291
科研通“疑难数据库(出版商)”最低求助积分说明 874006