Self-Supervised Group Graph Collaborative Filtering for Group Recommendation

计算机科学 协同过滤 推荐系统 图形 群(周期表) 机器学习 人工智能 任务(项目管理) 社会团体 情报检索 理论计算机科学 心理学 社会心理学 化学 有机化学 管理 经济
作者
Kang Li,Chang‐Dong Wang,Jianhuang Lai,Huaqiang Yuan
标识
DOI:10.1145/3539597.3570400
摘要

Nowadays, it is more and more convenient for people to participate in group activities. Therefore, providing some recommendations to groups of individuals is indispensable. Group recommendation is the task of suggesting items or events for a group of users in social networks or online communities. In this work, we study group recommendation in a particular scenario, namely occasional group recommendation, which has few or no historical directly interacted items. Existing group recommendation methods mostly adopt attention-based preference aggregation strategies to capture group preferences. However, these models either ignore the complex high-order interactions between groups, users and items or greatly reduce the efficiency by introducing complex data structures. Moreover, occasional group recommendation suffers from the problem of data sparsity due to the lack of historical group-item interactions. In this work, we focus on addressing the aforementioned challenges and propose a novel group recommendation model called Self-Supervised Group Graph Collaborative Filtering (SGGCF). The goal of the model is capturing the high-order interactions between users, items and groups and alleviating the data sparsity issue in an efficient way. First, we explicitly model the complex relationships as a unified user-centered heterogeneous graph and devise a base group recommendation model. Second, we explore self-supervised learning on the graph with two kinds of contrastive learning module to capture the implicit relations between groups and items. At last, we treat the proposed contrastive learning loss as supplementary and apply a multi-task strategy to jointly train the BPR loss and the proposed contrastive learning loss. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed model in comparison to the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助sjsjjj采纳,获得10
1秒前
霖爪飞扬发布了新的文献求助10
1秒前
ven发布了新的文献求助10
2秒前
3秒前
3秒前
Akim应助动听曼荷采纳,获得10
3秒前
千xi发布了新的文献求助30
3秒前
4秒前
5秒前
瀛瀛完成签到 ,获得积分10
5秒前
炒鸡蛋发布了新的文献求助10
5秒前
今后应助周周采纳,获得10
5秒前
5秒前
21完成签到 ,获得积分10
8秒前
8秒前
9秒前
耶格尔发布了新的文献求助10
9秒前
姜彦乔发布了新的文献求助10
9秒前
9秒前
10秒前
斯文败类应助wendinfgmei采纳,获得10
10秒前
10秒前
11秒前
callmefather发布了新的文献求助10
11秒前
fatal完成签到,获得积分10
12秒前
12秒前
科研通AI5应助xly采纳,获得10
12秒前
14秒前
14秒前
14秒前
14秒前
JamesPei应助dreamhigh-mentha采纳,获得10
15秒前
16秒前
完美世界应助霖爪飞扬采纳,获得10
16秒前
16秒前
Xiaoxiao应助科研通管家采纳,获得20
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
16秒前
小马甲应助科研通管家采纳,获得50
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867346
求助须知:如何正确求助?哪些是违规求助? 3409665
关于积分的说明 10664562
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728652
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780536