Metastable states assisted homogeneous nucleation in supercooled liquid aluminum alloys: Insights from a phenomenologically coupled atomistic, phase-field, and machine learning investigation

过冷 亚稳态 成核 化学物理 结晶 材料科学 分子动力学 相(物质) 经典成核理论 热力学 结晶学 凝聚态物理 物理 化学 计算化学 量子力学
作者
Md Mahmudul Hasan,Deep Choudhuri
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:162 (8)
标识
DOI:10.1063/5.0249473
摘要

Crystallization due to liquid → solid transformation is observed in many natural and engineering processes. Extant literature indicates that crystallization in supercooled liquids is initiated by precursory metastable phases or states, also called non-classical nucleation. For face-centered cubic (FCC) materials, latest experimental and computational studies suggest that metastable hexagonal-closed packed (HCP) structures facilitate equilibrium FCC formation. However, the underlying nucleation mechanism remains unclear. Here, we examine structural changes and energetic barriers associated with such a non-classical mechanism, by performing molecular dynamics (MD) simulations using pure Al, Al-0.5 at. %Cu, and Al-0.5 at. %Ni (all FCC-formers) and phenomenologically coupling MD results with phase-field (PF) modeling. Such a coupling involved initializing PF simulation domains and constructing Landau polynomials—consistent with MD observations. Unsupervised machine learning was utilized to capture nuclei structures from MD simulations, while neural networks helped in extracting equilibrium interfacial energies from PF modeling. Atomistic simulations showed that precursory nuclei are comprised of collection of metastable-HCP states with medium ranged ordering. The pockets of HCP states later transform to critical nuclei—containing an FCC core and an outer layer of HCP. PF modeling qualitatively replicated the precursory-to-critical nuclei transformation and showed that the energetic barriers between the precursory and critical nuclei are substantially smaller than predictions obtained from classical nucleation theory. Together, these observations permitted us to propose a holistic non-classical mechanism that links triangular motifs within Al-based supercooled liquids to the critical nuclei via in-liquid structural transformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼宝子完成签到,获得积分10
1秒前
七街完成签到 ,获得积分10
1秒前
jagger完成签到,获得积分10
2秒前
鲨鱼宝子发布了新的文献求助10
3秒前
4秒前
逍遥完成签到,获得积分20
4秒前
虚拟的含灵完成签到,获得积分10
5秒前
5秒前
ay发布了新的文献求助10
6秒前
孙燕应助快乐滑板采纳,获得10
7秒前
8秒前
CodeCraft应助和光同尘采纳,获得20
10秒前
Ning发布了新的文献求助10
11秒前
领导范儿应助沉静的诗霜采纳,获得10
11秒前
15秒前
科研通AI2S应助Rain采纳,获得10
15秒前
活力以冬完成签到,获得积分10
15秒前
16秒前
星辰大海应助meng采纳,获得10
18秒前
时光完成签到,获得积分10
19秒前
19秒前
zml完成签到,获得积分10
20秒前
科研通AI5应助小雪糕采纳,获得30
20秒前
有点怪完成签到,获得积分10
21秒前
summer完成签到 ,获得积分10
21秒前
Rain完成签到,获得积分10
22秒前
12345完成签到 ,获得积分10
24秒前
ay完成签到,获得积分10
24秒前
25秒前
SYLH应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Alex应助科研通管家采纳,获得10
26秒前
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846100
求助须知:如何正确求助?哪些是违规求助? 3388485
关于积分的说明 10553181
捐赠科研通 3109045
什么是DOI,文献DOI怎么找? 1713300
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982