Applying Wearable Sensors and Machine Learning to the Diagnostic Challenge of Distinguishing Parkinson’s Disease from Other Forms of Parkinsonism

帕金森病 帕金森病 可穿戴计算机 疾病 机器学习 人工智能 计算机科学 神经科学 医学 物理医学与康复 心理学 病理 嵌入式系统
作者
Rana Momtaz,Lisa Shulman,Ann L. Gruber‐Baldini,Stephen G. Reich,Joseph M. Savitt,Jeffrey M. Hausdorff,Rainer von Coelln,Michael P. Cummings
出处
期刊:Biomedicines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 572-572
标识
DOI:10.3390/biomedicines13030572
摘要

Background/Objectives: Parkinson’s Disease (PD) and other forms of parkinsonism share motor symptoms, including tremor, bradykinesia, and rigidity. The overlap in their clinical presentation creates a diagnostic challenge, as conventional methods rely heavily on clinical expertise, which can be subjective and inconsistent. This highlights the need for objective, data-driven approaches such as machine learning (ML) in this area. However, applying ML to clinical datasets faces challenges such as imbalanced class distributions, small sample sizes for non-PD parkinsonism, and heterogeneity within the non-PD group. Methods: This study analyzed wearable sensor data from 260 PD participants and 18 individuals with etiologically diverse forms of non-PD parkinsonism, which were collected during clinical mobility tasks using a single sensor placed on the lower back. We evaluated the performance of ML models in distinguishing these two groups and identified the most informative mobility tasks for classification. Additionally, we examined the clinical characteristics of misclassified participants and presented case studies of common challenges in clinical practice, including diagnostic uncertainty at the patient’s initial visit and changes in diagnosis over time. We also suggested potential steps to address the dataset challenges which limited the models’ performance. Results: Feature importance analysis revealed the Timed Up and Go (TUG) task as the most informative for classification. When using the TUG test alone, the models’ performance exceeded that of combining all tasks, achieving a balanced accuracy of 78.2%, which is within 0.2% of the balanced diagnostic accuracy of movement disorder experts. We also identified differences in some clinical scores between the participants correctly and falsely classified by our models. Conclusions: These findings demonstrate the feasibility of using ML and wearable sensors for differentiating PD from other parkinsonian disorders, addressing key challenges in its diagnosis and streamlining diagnostic workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘鸭鸭完成签到,获得积分10
4秒前
粗犷的灵松完成签到 ,获得积分10
8秒前
柠檬01210完成签到,获得积分10
10秒前
超帅柚子完成签到 ,获得积分10
14秒前
默默完成签到 ,获得积分10
15秒前
离子电池完成签到,获得积分10
16秒前
无奈醉柳完成签到 ,获得积分10
16秒前
余味应助科研通管家采纳,获得10
18秒前
wuludie应助djbj2022采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
余味应助科研通管家采纳,获得10
18秒前
欧巴拉吧发布了新的文献求助20
20秒前
傻傻的哈密瓜完成签到,获得积分10
20秒前
然来溪完成签到 ,获得积分10
20秒前
leah完成签到 ,获得积分10
21秒前
25秒前
不会学习的小郭完成签到 ,获得积分10
25秒前
Emper完成签到,获得积分10
27秒前
jyy应助欧巴拉吧采纳,获得20
28秒前
fantexi113完成签到,获得积分0
29秒前
甘sir完成签到 ,获得积分10
29秒前
小蘑菇应助帅气的祥采纳,获得10
30秒前
Huibo完成签到,获得积分10
34秒前
Zhao完成签到 ,获得积分10
35秒前
SONGYEZI完成签到,获得积分0
36秒前
fhz完成签到,获得积分10
40秒前
Aurora完成签到 ,获得积分10
40秒前
姜忆霜完成签到 ,获得积分10
44秒前
Cynthia完成签到 ,获得积分10
45秒前
LIUJIE完成签到,获得积分10
46秒前
Suliove完成签到,获得积分10
47秒前
华子的五A替身完成签到 ,获得积分10
51秒前
52秒前
清秀龙猫完成签到 ,获得积分10
1分钟前
zly完成签到 ,获得积分10
1分钟前
端庄优雅完成签到 ,获得积分10
1分钟前
21完成签到,获得积分10
1分钟前
fawr完成签到 ,获得积分10
1分钟前
liuzhigang完成签到 ,获得积分10
1分钟前
瀚森完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804266
求助须知:如何正确求助?哪些是违规求助? 3349064
关于积分的说明 10341339
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682984
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600