Manganese–Based Metal–Organic Coordination for Aqueous Zinc–Ion Batteries With Varying Mechanical Adaptability and Machine Learning–Assisted Performance Decoding

材料科学 阴极 电化学 蒽醌 水溶液 储能 配位复合体 电池(电) 化学工程 纳米技术 金属 电极 冶金 化学 有机化学 功率(物理) 物理 物理化学 量子力学 工程类
作者
Qian Li,Yanfei Zhang,Wanchang Feng,Jianfei Huang,Shiping Wei,Guo Chen,Yu Liu,Meng Du,Chenhui Yin,Zhangbin Yang,Yangyang Sun,Shuai Cao,Chengang Pei,Hsiao‐Chien Chen,Huan Pang
出处
期刊:Advanced Materials [Wiley]
被引量:4
标识
DOI:10.1002/adma.202507951
摘要

Abstract Aqueous zinc–ion batteries (AZIBs) have garnered significant attention owing to their high safety and low cost; however, their development is hindered by the poor cycling stability and low capacity of traditional inorganic cathode materials. This study innovatively utilizes dihydroxy/diamino anthraquinone (DHAQ/DAAQ) ligands featuring π–conjugated systems and quinone–based redox activity. By precisely regulating the substitution sites (1,2–/1,4–/1,5–) and coordinating them with Mn 2+ , layered flower−cluster Manganese–based metal–organic coordination is successfully constructed. The experimental results indicated that in the Mn−1,4−DHAQ cathode, the symmetric structure of the 1,4–dihydroxy substitution promoted electron delocalization and formed stable coordination bonds with Mn 2+ , thereby providing excellent electrochemical performance. Furthermore, both in situ and ex situ characterizations elucidated the Zn 2+ storage mechanism during charge–discharge processes. Notably, this work incorporated machine learning techniques to develop a specific capacity prediction model, laying a methodological foundation for future research in the field of energy storage. Theoretical calculations are employed to gain deeper insight into the underlying reasons for the outstanding performance of Mn−1,4−DHAQ. In addition, Mn−1,4−DHAQ is successfully applied as a cathode material in soft−pack batteries, gel electrolyte devices, and screen−printed devices, demonstrating excellent mechanical adaptability and practical application potential. Novel strategy for high−performance MOC–based AZIBs boosts practical energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富贵儿完成签到 ,获得积分10
刚刚
刚刚
刚刚
SciGPT应助等待黎明采纳,获得10
刚刚
自由伊完成签到,获得积分10
刚刚
刚刚
1秒前
poplin完成签到,获得积分10
1秒前
欢乐的辞南完成签到 ,获得积分10
1秒前
许鑫鑫完成签到,获得积分10
1秒前
李爱国应助Kiki采纳,获得10
2秒前
2秒前
科目三应助小小采纳,获得10
3秒前
禾苗发布了新的文献求助10
3秒前
宗剑完成签到,获得积分10
3秒前
卡皮巴拉发布了新的文献求助10
4秒前
4秒前
薛佳琦完成签到,获得积分10
4秒前
劳苦打工人完成签到,获得积分20
4秒前
4秒前
颖火虫2588完成签到,获得积分10
4秒前
等待谷南完成签到,获得积分10
4秒前
wait完成签到,获得积分10
4秒前
WANA完成签到,获得积分10
5秒前
wxxsx发布了新的文献求助10
5秒前
Jasper应助dadada采纳,获得10
5秒前
gqb完成签到,获得积分10
5秒前
Tau发布了新的文献求助10
5秒前
xiaolin发布了新的文献求助10
5秒前
FashionBoy应助李诚信采纳,获得10
5秒前
小蘑菇应助许鑫鑫采纳,获得10
5秒前
坚强似狮完成签到,获得积分10
5秒前
善学以致用应助李诚信采纳,获得10
6秒前
珺儿完成签到,获得积分20
6秒前
surain发布了新的文献求助10
6秒前
卖萌的秋田完成签到,获得积分10
6秒前
简单的冬瓜完成签到,获得积分10
6秒前
小田完成签到 ,获得积分10
6秒前
巴豆醇发布了新的文献求助10
6秒前
zhukun完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768