化学
发光
分析化学(期刊)
结晶学
物理化学
物理
光电子学
色谱法
作者
Yixuan Ma,Xiaopeng Zhou,Jiapeng Wu,Zhijie Dong,L. Cui,Yuhua Wang,Andries Meijerink
摘要
Luminescence thermometry is a remote temperature sensing technique that utilizes temperature-dependent luminescence properties. Lanthanide-doped materials with two thermally coupled emitting levels displaying a variation in luminescence intensity ratio (LIR) with temperature have been successfully explored to design sensitive luminescent thermometers. However, the low absorption strength of lanthanide parity-forbidden 4fn → 4fn transitions reduces the brightness. Also, this Boltzmann-type thermometer is only sensitive within a limited temperature range. To address these issues, we report here YV1-xPxO4:Eu3+, Er3+ as a luminescent thermometer. This material utilizes the sensitized emission of Ln3+ by strong and broad vanadate charge transfer absorption and has a wide and tunable optimum temperature range by controlling the thermal quenching of Eu3+ emission through a variation of x. The new temperature probe offers a single material with multiple temperature-dependent luminescence properties, viz. the LIR of 2H11/2/4S3/2 emission of Er3+, the LIR of the integrated Er3+ and Eu3+ emission intensities, and the Eu3+ emission lifetime. Both micro- and nanocrystalline temperature probes are reported to achieve relative sensitivities (Sr) from ∼0.5%/K to over 5%/K in a wide temperature range of 300-873 K. To demonstrate practical applicability, the luminescent thermometer was applied to in situ chip temperature detection revealing temperature accuracies better than 1 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI