Noninvasive prediction of esophagogastric varices in hepatitis B: An extreme gradient boosting model based on ultrasound and serology

医学 接收机工作特性 逻辑回归 内科学 放射科 超声波 乙型肝炎 内镜超声
作者
Siyi Feng,Zee Pin Ding,Jin Cheng,Haibin Tu
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:31 (13)
标识
DOI:10.3748/wjg.v31.i13.104697
摘要

BACKGROUND Severe esophagogastric varices (EGVs) significantly affect prognosis of patients with hepatitis B because of the risk of life-threatening hemorrhage. Endoscopy is the gold standard for EGV detection but it is invasive, costly and carries risks. Noninvasive predictive models using ultrasound and serological markers are essential for identifying high-risk patients and optimizing endoscopy utilization. Machine learning (ML) offers a powerful approach to analyze complex clinical data and improve predictive accuracy. This study hypothesized that ML models, utilizing noninvasive ultrasound and serological markers, can accurately predict the risk of EGVs in hepatitis B patients, thereby improving clinical decision-making. AIM To construct and validate a noninvasive predictive model using ML for EGVs in hepatitis B patients. METHODS We retrospectively collected ultrasound and serological data from 310 eligible cases, randomly dividing them into training (80%) and validation (20%) groups. Eleven ML algorithms were used to build predictive models. The performance of the models was evaluated using the area under the curve and decision curve analysis. The best-performing model was further analyzed using SHapley Additive exPlanation to interpret feature importance. RESULTS Among the 310 patients, 124 were identified as high-risk for EGVs. The extreme gradient boosting model demonstrated the best performance, achieving an area under the curve of 0.96 in the validation set. The model also exhibited high sensitivity (78%), specificity (94%), positive predictive value (84%), negative predictive value (88%), F1 score (83%), and overall accuracy (86%). The top four predictive variables were albumin, prothrombin time, portal vein flow velocity and spleen stiffness. A web-based version of the model was developed for clinical use, providing real-time predictions for high-risk patients. CONCLUSION We identified an efficient noninvasive predictive model using extreme gradient boosting for EGVs among hepatitis B patients. The model, presented as a web application, has potential for screening high-risk EGV patients and can aid clinicians in optimizing the use of endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ylq采纳,获得30
1秒前
旺仔发布了新的文献求助10
1秒前
王小少完成签到,获得积分10
1秒前
1秒前
听我说事情不是这样的关注了科研通微信公众号
2秒前
1t完成签到,获得积分10
2秒前
3秒前
困敦发布了新的文献求助10
4秒前
常冬寒发布了新的文献求助10
4秒前
丁斌完成签到,获得积分20
5秒前
5秒前
过时的电灯胆完成签到,获得积分10
5秒前
6秒前
SYLH应助旺仔采纳,获得10
6秒前
小树完成签到,获得积分10
7秒前
科研通AI5应助枯叶蝶采纳,获得10
7秒前
lmm发布了新的文献求助20
8秒前
8秒前
mach发布了新的文献求助10
8秒前
善学以致用应助清秀书桃采纳,获得10
8秒前
9秒前
李健应助杨阳洋采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
学术浓痰发布了新的文献求助10
9秒前
LY完成签到,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得30
9秒前
刷完牙吃东西完成签到,获得积分10
9秒前
wanci应助科研通管家采纳,获得200
9秒前
111应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599