Anomaly Detection in Seismic Data with Deep Learning: Application for Instrument Failure Detection and Forecasting

自编码 异常检测 计算机科学 深度学习 数据挖掘 数据质量 异常(物理) 人工智能 基线(sea) 监督学习 比例(比率) 机器学习 人工神经网络 地质学 工程类 物理 凝聚态物理 公制(单位) 运营管理 海洋学 量子力学
作者
Jiun‐Ting Lin,A. C. Aguiar,Qingkai Kong,Amanda Price,Stephen C. Myers
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240331
摘要

Abstract Seismic data quality assessment (QA) is the first and one of the most important steps before conducting any further data analysis. Traditional methods involve checking various metrics, such as spike detection and power spectral density, by setting strict thresholds or comparing data against synthetic benchmarks. However, these approaches often rely on pre-existing knowledge and assumptions about data anomalies, leading to potential misclassification of unusual cases. Here, we propose a deep autoencoder model, an unsupervised learning approach that evaluates data quality without making assumptions about normal and anomalous data, which can be used to identify deviations in recorded data that may indicate nascent instrument failure. We test the model with the U.S. International Monitoring System (IMS) seismic stations and demonstrate the capability of detecting anomalies on a monthly scale. This could prompt station operators to examine potential problems early, allowing sufficient time for instrument maintenance to prevent data outages. In addition, we use a new manually selected testing dataset to compare our model performance against two supervised machine learning (ML) approaches and a standard QA package, as baseline models. When applied to the dataset containing known data anomalies, performance of the supervised and unsupervised ML approaches is similar, with an accuracy of 88.1% for our model compared to ∼90% for the supervised ML approach and 78.2% for the standard QA package. Our model outperforms the baseline models when applied to new stations, where new types of data anomalies can be station-specific and not included in the training dataset. Finally, we show model transferability by training the model with data from the Global Seismograph Network only and applying it to the IMS network data. The results suggest that our model is generalizable and can be applied to new stations with good accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caicai完成签到,获得积分10
刚刚
慕青应助生医工小博采纳,获得10
1秒前
1秒前
Sophia发布了新的文献求助10
2秒前
2秒前
英俊的铭应助dd采纳,获得30
2秒前
water应助Xenia采纳,获得10
2秒前
文七七完成签到,获得积分20
4秒前
4秒前
pphu完成签到,获得积分10
5秒前
FashionBoy应助caicai采纳,获得10
5秒前
wqc2060发布了新的文献求助10
6秒前
一只CY完成签到,获得积分10
6秒前
喜悦落雁发布了新的文献求助10
7秒前
传奇3应助昏睡的蟠桃采纳,获得10
7秒前
pphu发布了新的文献求助10
7秒前
热塑性哈士奇完成签到,获得积分10
8秒前
大个应助lmr采纳,获得10
8秒前
cheng发布了新的文献求助10
10秒前
酷波er应助肖聪采纳,获得10
11秒前
12秒前
无情元瑶完成签到,获得积分20
13秒前
13秒前
wuwa完成签到,获得积分10
13秒前
14秒前
打打应助追寻的灵竹采纳,获得10
16秒前
17秒前
梅豪完成签到,获得积分10
17秒前
哆啦A梦完成签到,获得积分10
18秒前
18秒前
无情元瑶发布了新的文献求助10
18秒前
大模型应助鲜于枫采纳,获得10
19秒前
FlipFlops完成签到,获得积分10
19秒前
20秒前
gky完成签到,获得积分10
20秒前
20秒前
20秒前
我爱妹妹发布了新的文献求助10
21秒前
善学以致用应助废寝忘食采纳,获得10
23秒前
maodou发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939767
求助须知:如何正确求助?哪些是违规求助? 3485848
关于积分的说明 11034820
捐赠科研通 3215734
什么是DOI,文献DOI怎么找? 1777373
邀请新用户注册赠送积分活动 863506
科研通“疑难数据库(出版商)”最低求助积分说明 798908