Anomaly Detection in Seismic Data with Deep Learning: Application for Instrument Failure Detection and Forecasting

自编码 异常检测 计算机科学 深度学习 数据挖掘 数据质量 异常(物理) 人工智能 基线(sea) 监督学习 比例(比率) 机器学习 人工神经网络 地质学 工程类 量子力学 海洋学 物理 凝聚态物理 运营管理 公制(单位)
作者
Jiun‐Ting Lin,A. C. Aguiar,Qingkai Kong,Amanda Price,Stephen C. Myers
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240331
摘要

Abstract Seismic data quality assessment (QA) is the first and one of the most important steps before conducting any further data analysis. Traditional methods involve checking various metrics, such as spike detection and power spectral density, by setting strict thresholds or comparing data against synthetic benchmarks. However, these approaches often rely on pre-existing knowledge and assumptions about data anomalies, leading to potential misclassification of unusual cases. Here, we propose a deep autoencoder model, an unsupervised learning approach that evaluates data quality without making assumptions about normal and anomalous data, which can be used to identify deviations in recorded data that may indicate nascent instrument failure. We test the model with the U.S. International Monitoring System (IMS) seismic stations and demonstrate the capability of detecting anomalies on a monthly scale. This could prompt station operators to examine potential problems early, allowing sufficient time for instrument maintenance to prevent data outages. In addition, we use a new manually selected testing dataset to compare our model performance against two supervised machine learning (ML) approaches and a standard QA package, as baseline models. When applied to the dataset containing known data anomalies, performance of the supervised and unsupervised ML approaches is similar, with an accuracy of 88.1% for our model compared to ∼90% for the supervised ML approach and 78.2% for the standard QA package. Our model outperforms the baseline models when applied to new stations, where new types of data anomalies can be station-specific and not included in the training dataset. Finally, we show model transferability by training the model with data from the Global Seismograph Network only and applying it to the IMS network data. The results suggest that our model is generalizable and can be applied to new stations with good accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
qq完成签到,获得积分10
2秒前
科研通AI6应助愤怒的铁身采纳,获得10
4秒前
青年才俊发布了新的文献求助10
6秒前
7秒前
Zsx发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
英俊的铭应助bear采纳,获得10
10秒前
11秒前
11秒前
科研通AI5应助zzzxiangyi采纳,获得10
12秒前
kelly发布了新的文献求助10
14秒前
morena发布了新的文献求助10
15秒前
大模型应助清爽难敌采纳,获得30
16秒前
16秒前
mcxkjnv完成签到,获得积分10
16秒前
zzzz关注了科研通微信公众号
16秒前
16秒前
淡淡采白发布了新的文献求助10
17秒前
17秒前
lpf发布了新的文献求助10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040