Ligand-Based Drug Discovery Leveraging State-of-the-Art Machine Learning Methodologies Exemplified by Cdr1 Inhibitor Prediction

药物发现 配体(生物化学) 计算机科学 国家(计算机科学) 人工智能 计算生物学 机器学习 化学 生物 算法 生物化学 受体
作者
The-Chuong Trinh,Pierre Falson,Viet‐Khoa Tran‐Nguyen,Ahcène Boumendjel
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00374
摘要

Artificial intelligence (AI) is revolutionizing drug discovery with unprecedented speed and efficiency. In computer-aided drug design, structure-based and ligand-based methodologies are the main driving forces for innovation. In cases where no experimental structure or high-confidence homology/AlphaFold-predicted model of the target is available in 3D, ligand-based strategies are generally preferable. Here, we aim to develop and evaluate new predictive AI models for ligand-based drug discovery. To illustrate our workflow, we propose, as an example, an ensemble classification model for Cdr1 inhibitor prediction. We leverage target-specific experimental data from different sources, various molecular feature types, and multiple state-of-the-art machine learning (ML) algorithms alongside a multi-instance 3D graph neural network (multiple conformations of a single molecule are considered). Bayesian hyperparameter tuning, stacked generalization, and soft voting are involved in our workflow. The final target-specific ensemble model benefits from the classification and screening power of those constituting it. On an external test set structurally dissimilar to the training data, its average precision is 0.755, its F1-score is 0.714, the area under the receiver operating characteristic curve is 0.884, and the balanced accuracy is 0.799. It gives a low false positive rate of 0.1236 on another test set outside the training chemical space, indicating its ability to avoid false positives. The present work highlights the potential of stacking ensemble ML and offers a rigorous general workflow to build ligand-based predictive AI models for other targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
原子发布了新的文献求助10
刚刚
GY发布了新的文献求助10
2秒前
2秒前
TGU2331161488应助小白新手采纳,获得10
5秒前
5秒前
5秒前
北风发布了新的文献求助10
6秒前
上官若男应助扎心采纳,获得10
7秒前
8秒前
5656发布了新的文献求助10
9秒前
9秒前
江小美发布了新的文献求助10
11秒前
12秒前
missa发布了新的文献求助10
12秒前
岁月轮回发布了新的文献求助10
13秒前
Cyrus发布了新的文献求助10
13秒前
kun应助Aizen采纳,获得10
17秒前
18秒前
西早07完成签到,获得积分10
18秒前
Newky发布了新的文献求助10
18秒前
小飞飞应助听闻墨笙采纳,获得10
19秒前
20秒前
不倦应助5656采纳,获得10
21秒前
扎心发布了新的文献求助10
22秒前
无奈皮卡丘完成签到 ,获得积分10
22秒前
虚拟的芾完成签到 ,获得积分10
22秒前
隐形曼青应助三金采纳,获得10
22秒前
原子完成签到,获得积分10
23秒前
莫之白完成签到,获得积分10
23秒前
24秒前
25秒前
missa完成签到,获得积分10
25秒前
leegawei关注了科研通微信公众号
26秒前
26秒前
GY完成签到,获得积分10
27秒前
27秒前
28秒前
一粟的粉r完成签到 ,获得积分10
28秒前
31秒前
baifeng应助影子1127采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612